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authors first derive some formulas of Keplerian motion
involving their six elements, then the perturbation equations,
and finally, present the first order solution. It is inter-
esting to observe that no critical angles occur in the second
order solution, but that they will appear in a third order
solution.

The tenth paper by R. E. Wheeler of Hayes International
Corporation presents a statistical procedure for estimating
the -accuracy that can be expected of a given guidance func-
tion. Variations due to changes in launch times, vehicle
parameters, and other disturbances are considered. The
procedure establishes an upper bound for 2-sigma limits and
checks the validity of such limits.

The eleventh paper by R. E. Wheeler of Hayes Inter-
national Corporation presents the derivation of a mathematical
model for fitting the steering function. No end conditions
were considered since all constants of integration were
combined with unknown constants in the expansion.

The twelfth paper by Daniel E. Dupree, James O'Neil,
and Edward Anders of Northeast Louisiana State College
presents a method of developing a function wN+1(B')
previously derived in Progress Report No. 5. The method
is detailed in the report and will be implemented here in
the near future.
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SUMMARY

Dirac's generalized Hamiltonian dynamics is described and applied first
to a particular optimization problem and then to a general class of such problems.
It is shown that the Dirac formulation leads to a Hamiltonian to which the
Pontryagin Maximum Principle can be applied. Further, this Hamiltonian has
the property of being canonical in all of its variables, and is thus susceptible
to treatment:by the methods of classical celestial mechanics. The report
closes with a brief discussion of how perturbation techniques, based on the

. Dirac Hamiltonian, might be developed for the solution of optimization problems.
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I. INTRODUCTION

The purpose of this report is to formulate a generalization of the
Pontryagin approach for application to optimization problems. This generali-
zation will add nothing new to the basic equations to be solved, but is, rather,
intended to lead to perturbation procedures for the solution of these equations.
In the Pontryagin formulation of optimization problems a function which bears
close resemblance to a Hamiltonian function is introduced. It differs from
most classical Hamiltonian functions in two respects: First, the classical
Hamiltonian for most problems in dynamics is quadratic in the momenta
whereas the Pontryagin Hamiltonian is linear. The second difference is that
the Pontryagin Hamiltonian is canonical only in the state variables and their
conjugate momenta. In the Pontryagin approach, the control variables are
determined, not from Hamilton equations, but by the Pontryagin maximum prin-
ciple which says that the Hamiltonian must be a maximum in the control variables.
The generalization consists in defining a new Hamiltonian, to which the maximum
principle can still be applied, but which is canonical in all the variables. The
advantage of this new Hamiltonian is that all the methods of classical dynamics
now become available for the solution of the problem. In particular, the classi-
cal perturbation theories can be applied for obtaining successive closed form
approximations for the solution. Most current efforts to solve optimization
problems involve numerical integration with the serious defect that initial values
of the momenta must be found from an initial set of trial values by some differ-
ential correction procedure whose success will in general depend on how close

these trial values are to the actual initial conditions.

The construction of the new Hamiltonian is based on a technique developed
by Dirac for problems in which the Lagrangian function is linear in the velocities.

10



It is shown in Section III that the construction of a Hamiltonian for such problems
involves special difficulties that are not present in the usual problems of
classical dynamics for which the Lagrangian is quadratic in the velocities.
Dirac's motivation for this work was his interest in relativistic gravitational
fields and quantum electrodynamics. In both problems the Lagrangian is

linear in some of the generalized velocities, so that the difficulties that are
involved in the construction of a Hamiltonian are identical with those involved

in optimization problems. Thus the Dirac formulation, although not originally
intended for this purpose, can be applied to optimization problems.

It will be seen that the new Hamiltonian, which will be referred to as the
Dirac Hamiltonian, wjll be linear in all the momenta problems for optimization.
This fact makes it very attractive from the point of view of development of a
Hamilton-Jacobi perturbation theory since the Hamilton-Jacobi equation will be
a linear partial differential equation of first order.

Section II presents some general background material. In Section III,
the construction of the Dirac Hamiltonian is discussed in some detail. Section
IV presents a development of the Dirac Hamiltonian for a time optimal point-to-
point transfer problem. In Section V the connection between the Pontryagin and
Dirac Hamiltonians is discussed for the example of Section IV, and in Section V

the theory is extended to more general problems. Finally, Section VII presents

a brief discussion of the ways in which perturbation procedures might be developed

for the solution of optimization problems.
II. BACKGROUND

In the Pontryagin formulation of optimization problems, the variables are
clasgified as state variables X, which must satisfy certain equations of motion

and control variables A which appear in the equations of motion:

Xi=fi x,y) , i=1,2,...n. (1)
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From the state variables X; and a set of adjoint or conjugate variables zpi a

Hamiltonian function HP is constructed which is canonical in the variables

X and their conjugate momenta d’i' That is, the Hamilton equations

oH oH

i} . P
=590 o %7 3%, (2)
1 1

are satisfied. The Hamiltonian is constructed so that the Hamilton equations
for X, are just the equations of motion, and the equations for "bi serve to define

the conjugate functions zpi. The Hamiltonian H_ is not canonical in the control

P
variables A since no momenta conjugate to the y; appear and hence the &i are

not given by partials of H with respect to their momenta. The subscript P is

P
used to distinguish the Pontryagin Hamiltonian from a conventional Hamiltonian

which is canonical in all of its variables.

For a problem which optimizes X, with

X, =1, (%5) (3)

an additional variable Y, is introduced and the Pontryagin Hamiltonian has the

form

Hp = Z FRFRLI (4)

For a time optimal problem fo =1, and it is shown (page 20 of Ref. 1) that ‘bo

is a negative constant, which may be taken as -1 without loss of generality.

As mentioned above, the Pontryagin Hamiltonian is not canonical in the
control variables. The control variables are determined from the Maximum
Principle which says that HP must be a maximum in the control variables if the
optimization is a minimization. It is shown in this report that a technique

developed by Dirac may be used to define a Hamiltonian H., which is canonical

D
- in all of the variables. This Hamiltonian is usable as a Pontryagin Hamiltonian

for application of the Maximum Principle and has the added advantage that the
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transformation theory of Hamiltonian dynamics is now available for the solution
of optimization problems. It is evident from Eq. (4) that HP is linear in the
momenta P, and this property will also hold for the Dirac Hamiltonian Hy,
which in fact is linear in all the momenta p; conjugate to the coordinates g,
which will be seen to include not only the state and control variables, but also
the Lagrange multipliers associated with the Lagrangian formulation of the
problem. Thus, for example, the Hamilton-Jacobi equation obtained by substi-
tuting
95(q, a)
p; = (5)

5

in HD will be a linear partial differential equation for the generating function S.

Its solution would lead to a canonical transformation, defined by S, to new
canonical variables o and Qi obtained from Eq. (5) and the following equation:

3S(q,)
Q= Y (6)
i

The Hamiltonian may be written

HD = HD (ai) (7)
in terms of the new variables, so that

dH oH
= D = a —3 D = —3

oy = - aQi 0 Qi Bai Vi constant (8)
or

Q;=v;t+B; . 9

Even if the Hamilton-Jacobi equation is not solvable, the standard perturbation
procedures of celestial mechanics would now be available by writing HD as the

sum of H_ . and HD1 with HDO selected to represent a solvable problem and HDl

DO
treated as a perturbation (Ref. 2, pp. 62-74).
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In order to obtain the Dirac Hamiltonian HD, it is necessary to start from

a Lagrangian formulation. For a time optimal problem the Lagrangian function
is

L=1+ >‘i G‘i - fi (x,y)> (10)

T~ s

1

where the >‘i are the usual Lagrange multipliers associated with the equations
of motion regarded as differential constraints. To pass from a Lagrangian to
a Hamiltonian formulation, one first defines momenta P; conjugate to the
variables q (which include the X:s ¥ and >‘i) by the equation

3L

p, =
3 q1 (11)

1

For the Lagrangian (10), the momenta conjugate to X V3 and >‘i are

PiTsk M0 PaTan 0 Pytay 7O (12)
i i i
The Hamiltonian is conventionally defined as the function
n
H=Zpiqi-L. (13)
i=1

It is readily shown that this Hamiltonian is a function only of the d's and p's and
is independent of the Y's. This is done by considering the variation in H produced

by variations in the q's, Y's and p's consistent with the defining relations (11)
for the p's, but otherwise arbitrary:

n n n n
n By 2L
0H = } pi“*ﬁz 4;6p; - Z 0q; 6q; - Za 64;

i=1 =1 i=1 i=1 (14)
n n

T T AL

- Z 4; 6p; - Z Sa. 0%
i=1 i=1 °%
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The variation in H is independent of the variations in the §'s and hence it must
be possible to write H in such a way that it depends only on q's and p's. In
conventional problems in dynamics, Egs. (11), defining the p's, may be uniquely
inverted to give the Y's as functions of the q's and p's. These expressions for
the Y's may then be substituted for H in the defining Eq. (13) to give a unique

expression for H as a function of ¢'s and p's.

For the optimization problem, with the Lagrangian (10), the relations of
Eq. (14) still hold, so that the Hamiltonian is still independent of the §'s. It is,

however, no longer unique, as may be seen by direct use of Egs. (12) and (13):

’

n n
H= Ep 4 - L= Z yph Z 1yi'1’z"i("i'fi)
i=1 i=1 i=1
(15)
n n n
Z(p SA) K ) Py, )\i+>-1pyij(i S14) A f
i=1 i=1 i=1 i=1
= Z )‘i fi -1, n’ = number of control variables
since the first three sums vanish by virtue of Eqs. (12). One can again make
use of Egs. (12) to write the Hamiltonian as
n
4
H Z P f -1 (16)
i=1

which has, of course, the same "value" as H, but has a different functional form.
The form (15) would require that all velocities vanish if it is considered as a
"true' Hamiltonian, canonical in its variables. The form (16) is substantially

the Pontryagin Hamiltonian and is canonical in the state variables.
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III. THE DIRAC HAMILTONIAN

In References 3 and 4, Dirac has developed his Hamiltonian formulation
for problems in which constraints among the coordinates and momenta are
implied by the defining equations for the momenta. The treatment in Reference
3 is more detailed and also more difficult to read than that in Reference 4.

Most of the development in Reference 3 is for a Lagrangian homogeneous of the
first degree in the velocities. While this restriction involves no loss of general-
ity (the Lagrangian may always be transformed to this form, as shown in Refer-
ence 5), it does not appear in Reference 4. The results of the two analyses are
substantially the same. The treatment in Reference 4 is in a form more useful
for optimization problems. The contents of References 3 and 4 are presented

below, for direct application to optimization problems.

The starting point for Dirac's development is a Lagrangian which is a

function of N generalized coordinates q; and their velocities qi :

L=L(qY) (17)

from which momenta p, conjugate to the coordinates . are defined b
1 i Yy

P.

_3L
i qu

(18)

As noted in Section I, if Eqs. (18) may be inverted to give each qi as a unique
function of the q's and p's, the classical Hamiltonian development follows. If

this is not the case, the classical definition of the Hamiltonian becomes ambiguous,
as illustrated by Eqgs. (15) and (16). Actually these two equations are special
cases of an infinite number of forms for the Hamiltonian:

Hy+ ) a o (19)
m
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where H, is any form such as in Egs. (15) or (16), the a  are arbitrary functions

1
of the q's and p's, and the ¢'s represent the constraints among the q's and p's

implicit in Eq. (18) defining the p's:
O (@4:p) =0 (20)

These constraints may arise because some of the q's do not appear in Egs. {18)
or because of redundancy of these equations in the q's. Strictly speaking, the
expressions (19) cannot really all be regarded as Hamiltonians since by a
Hamiltonian one usually means a function of coordinates and their conjugate

momenta such that the Hamilton equations

o/
=

t.do
]
|

(21)

qiz

Q

Py

...
[e%3Te¥
e

are equivalent to the equations of motion of the system described by the
Lagrangian L. Thus, the question that Dirac asks is ""How may coefficients

L be chosen from all arbitrary coefficients an in Eq. (19) so that, given some
H1 satisfying

Hy=) p - L (22)
i

the function

H=H1+Zu

m

m ®m (23)

is the Hamiltonian for the Lagrangian system L?'" As shown in Section II, the
function H,, defined by Eq. (22), may be regarded as a function only of q's and
p's. Since the @, are also functions only of q's and p's, the function H of Eq.

(23) satisfies the first condition for a Hamiltonian, i.e., it is a function only of
coordinates q; and their conjugate momenta p;- It remains to determine the L
as functions of the q; and p; such that the Hamilton equations describe the motion
of the system. It will turn out that the Hamiltonian so obtained is not unique. The

essential reason for this is discussed at the end of this section.
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It is necessary to make a few remarks about the functions ®m before
proceeding. These functions are assumed to form a complete, independent set
of constraints on the q's and p's implied by Egs. (18). The term'independent'
means that no constraint, say Oye» is implied by the remaining constraints. In
this connection, it should be noted that independent constraints O = 0 and ,
independent functions @) are not synonomous terms The functions q and g
are independent but the constraints g = 0 and q = 0 are not independent; each
implies the other. The term '"complete' means that every constraint implied by
Eqgs. (18) is also implied by Egs. (20) and conversely. It is obvious that the
number of constraints M cannot exceed the number of coordinates N. If the
Lagrangian is independent of some velocity, say qk, it follows that the momentum

P conjugate to 9 vanishes so that one constraint would be
01 =P =0 (24)

If the Lagrangian is homogeneous of the first degree in the velocities, the
momenta will be homogeneous of degree zero in the velocities and hence depend
only on the ratio of the velocities. Since there are only N-1 independent ratios
of velocities and there are N p's, at least one constraint among the q's and p's
must exist. Still another way in which constraints might arise occurs when the

velocities ql and qz appear, for example, only in the form ql + qz. Then

o dL
P17 P "5, + ) 25)

and the corresponding constraint is

©=py-Ppy =0 (26)

In the following development the assumptions made on the nature of the
constraints is that they be independent, complete, and differentiable. The pur-

pose of this last condition will appear immediately.

It has already been seen (Section II) that the variation in Hl’ induced by
variations in the ¢'s, Y's and p's consistent with the defining equations for the
momenta, may be written

18



Zq 5p; Z (27)

The condition on the variations in the q's, Y§'s and p's implies not only that Eq.
(18) holds (this was used to cancel out the 6 § terms) but that they be such that
the induced variations in the ¢'s shall vanish -~ that is that the constraints not be

violated. Thus, the following relations among the § q; and 6 P; hold:

6p. =0 (28)

These equations may be interpreted as saying that of the 2 N variations, § q;
and Gpi, some M may be determined in terms of the remaining 2 N - M, At
this point the meaning of the independence of the ¢'s may be more precisely
stated: the ¢'s must be such that Eq. (28) form a consistent independent set of
linear equations in the & q; and ﬁpi.

Recalling that Hl is a function only of the q's and p's, and using the condi-
tion of differentiability on L which implies differentiability of H1 with respect to

its variables, one may write the variation of H1 in the form

(29)

If there were no constraints the qu and Gpi could all be regarded as independent
and matching coefficients of the qu and Gpi in Egs. (27) and (29) would lead fo
the usual Hamilton equations. With constraints present, one may proceed as
follows: Multiply Eq. (28) by the undetermined multiplier (—um) and sum over
m, add Eq. (27) and subtract Eq. (29) to obtain

oH,

i m

19
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X’\/\qi-—pH— -) u (p ) a;‘ 55, -).u m—aaipd—— 6q,=0 (30)
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Now think of some M of the 6 a9, and Gpi as being determined in terms of the
remaining 2N - M by Eq. (28) and require that the u be such that the coeffi-
cients of these M variations vanish. The remaining (2N - M) § qi and <5pi may
now be regarded as independent, so that their coefficients must also vanish.

Thus all coefficients in Eq. (30) are to vanish and, making use of the Lagrange

equations

Pi 3t 34, ~ o4, (31)
one obtains

q = B__I—Il + >_ a(o

i 9p L, m api
m
(32)
boooo1 v m
;=73 . %m 3q;
m
Since the Om all vanish, it follows that for any variable x
I<1%) du 3¢

d 3 m m _ m

Sx"m®m " %m 3x " %°m om  m 3x (33)
and hence, defining the Dirac Hamiltonian

Hp =Hy+ Z Um Pm (34)
one may conclude that HD is a Hamiltonian with Hamilton equations:

oH dH
_°"p . __ "D
qi - api Pi 3 qi (35)

The coefficients u = may be determined as functions of the ¢'s and p's as
follows. The equations of motion (35) obtained from the Hamiltonian (30) must
be consistent with the constraints (20). This means that not only must the ®m

vanish, but so must their time derivatives. That is, for each m

20



(36)

It generally happens that no u's will appear in some of Egs. (36). In this case,
additional constraints among the q's and p's appear, whose time derivatives
must also vanish. Those constraints associated with the defining equations for
the p's are denoted by O and are called primary constraints. All other con-
straints are denoted by X and are called secondary constraints. Only the
primary constraints appear in the Hamiltonian. All constraints must have
vanishing time derivatives, so that secondary constraints arising from (bm =0
may lead to additional secondary constraints. This process of equating time
derivatives of constraints to zero must be repeated until no further secondary
constraints appear. There will then remain a number of equations for the u
which may be insufficient to determine all M of the u - The case in which the
remaining equations are insufficient to determine all of the u requires special
discussion. Any inconsistency in either the constraining equations or the
equations for the u indicates an original Lagrangian formulation containing

inconsistencies.

To see how this process works in detail, it is desirable to introduce the
Poisson Bracket notation. If £ and 7 are two dynamical variables (functions of
Q's and p's) their Poisson Bracket (P. B.) is defined by

_\'{2¢& d3n 3&
[&;Tl]‘l{aqiapi 'apia——g; "
i
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from which it follows immediately that
(eml=-[n¢t] (g,61=0
[e.mel=[¢g,m]+L¢C] (38)
[engl=nlet]l+Llem]

The usefulness of this notation lies in the following relation:

e=) [$5 a0
1 (39)

i

EEBq a. aq an] [g’ D]

where use has been made of the Hamilton Egs. (35). Recalling the definition

(34) for Hl,one obtains
€='.€’ Hy+ Z um‘prn.]
m

lem ]+ ) w[ e en |+ ) oml b U | (40)

-L& |+ %m[e’wml

on making use of Eqs. (38).

The condition that a primary constraint have vanishing time derivatives

may now be written

22



¢; = [(’Di’ Hl,] + E Ym [‘Pi’ ‘Pm] =0 (41)
m

It may happen that for some ¢, , Loy , ] vanishes for all m, and in this case
P> HOi0 Py

Lo 7= 0% “)

would appear as a secondary constraint. Secondary constraints could also
arise by elimination of u's among some of Egs. (41). Let the independent
secondary constraints obtained from Eq. (41) be denoted by X; It is now re-
quired that all Xi should vanish; that is

-

X = [xi’ HJ * Z Um [Xi’ﬁ"m] (43)
m

and Egs. (43) may lead to further secondary constraints. When all the setondary
constraints have been found, there will remain a number of independent linear

equations in the u .

It is now necessary to provide a further classification of the constraints.
A constraint is defined as first class if its P. B. with H, and with every other
constraint vanishes either identically or by virtue of the constraints. All other
constraints are second class. Suppose that a set of the primary constraints,
denoted by O is first class. It follows that .

_I:‘pk’ HJ - [“’k’ (pm] = [‘Pk’ Xi] =0 (44)

Thus

qz)k=':(’3k’ H1]+z um[ "pm] =0

Pm’ =[‘pm" H1]+Z uml:‘pm"‘pm__}J=o (49)
m#k

(cont'd on next page)
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X = [xi’ Hl] * >; Ym ':Xi’ (’Dm] =0 (45) (cont'd)
m#k

and none of the equations requiring time derivatives of the constraints to vanish
contain the . Therefore, the u, are undetermined and the first class constraints
appear in the Hamiltonian H with undetermined multipliers. Dirac shows in his
paper that the multipliers associated with the second class primary constraints
are uniquely determined by those Eqs. (45) corresponding to the second class
constraints. The equations corresponding to the first class constraints, whether

primary or secondary, yield no information of the u's.

The Dirac Hamiltonian, given by Eq. (34), is now determined in terms of
any H,; consistent with Eq. (22) and the u's determined from Eq. (45). The u's
so obtained will, of course, depend on the particular form selected for Hl' The
Dirac Hamiltonians obtained from different choices for H1 may appear, at first
glance, to have different forms. This brings up the question, noted at the be-
ginning of this section, of the ambiguity in the Dirac Hamiltonian. It is, of
course, immediately obvious that first class primary constraints introduce an
ambiguity since their u coefficients are undetermined. There is a further ambiguity
which arises from the fact that the Hamiltonian has been constructed to be a
function only of q's and p's. Further, the Hamilton equations are satisfied and
are such that all constraints are maintained. The validity of the Hamilton
equations was obtained from the first order variation of H, and the ¢'s. Now,

suppose that some function g (4,p) is such that its first order variation
-\ 28 N
6g >_xaqi6qi+>46pi 6p; (46)
i i

vanishes by virtue of the constraints. Such a function is <pk2 or cos @) :

2k
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6<¢k2>=2¢k6¢k=0 since (pk=0
(47)
6 cos:pk>=—<sin<pk>6(pk=0 since sincpk=0

Since any such function may be added to the Dirac Hamiltonian without changing
either the Hamilton equations or the validity of the constraints, an additional
ambiguity is introduced besides that inherent in the existence of first class
constraints. The Dirac Hamiltonians obtained from different choices of H,

all lead to the same final equations of motion and all maintain the same con-
straints. Hence, they must differ only by functions whose first order variation
vanishes.

The introduction into HD of additional terms whose first order variation
vanishes has a very practical application: it frequently makes possible the elimina-
tion of some of the variables from the Hamiltonian, and reduces the number of
equations which must be solved. Just how this works is illustrated in the time

optimal orbit transfer problem discussed in Section IV.

IV. THE DIRAC FORMULATION
FOR A TIME OPTIMAL TRANSFER PROBLEM

This section illustrates how the Dirac Hamiltonian formulation is applied
to optimization problems for the following time optimal transfer problem. For
simplicity, the two dimensional problem is chosen. The state variables are the
coordinates x and y, their time rates of change g and 7, and the mass, m. Itis
assumed that initial and final values of all state variables are specified. The
control variables are 0, the direction of thrust, and the rate of fuel flow which
is assumed bounded between zero and some fixed upper limit 8. Thus, the

equations of motion for the problem are:

. , 2
k=g p--20.cBeos’s g
X m

] 2 (48)
=7 =—BV+CBI(:IOS(LCOSO
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where the thrust is, of course, -cm, and the constraint on the fuel flow is
carried by the variable ¢r. Forces other than thrust acting on the vehicle are
assumed derivable from a potential function V(x,y) dependent only on position

of the vehicle. The transfer time is to be minimized, subject to the equations
of motion (48), which are to be regarded as differential constraints. Since the
Dirac formulation can give information only on first order variations in the time
integral of the Lagrangian, no information on the nature of the extremals for
this integral appears in this section. In the next section the Maximum Principle
is incorporated in the theory, and discussions of the nature of the solution ob-
tained in this section are thus deferred. Introducing Lagrange multipliers, the
Lagrangian for this optimization problem is

L=1+) &-6+X (-1

2
: , 0V cBcos o .
tAg e L) @9)

+>‘5(n'1+3cosza)

The Lagrangian L contains, explicitly, the differential ccnstraints and the bound-
ing constraints on m. It does not, however, contain the constraints on the initial
and final values of the state variables. This omission means that the constants
of integration from the Hamilton equations must be ultimately used to determine
initial values for the control variables and the Lagrange multipliers. It will be
seen later that this represents a serious defect in the theory, and that an effort
should be made to find a Lagrangian formulation which explicitly includes all
constraints on the problem to be solved.

In the Lagrangian (49) the state variables x,y,£,n and m, the control
variables 6 and ¢, and the Lagrange multipliers >‘i will all be regarded as
coordinates. The only velocities appearing are those corresponding to the
state variables. The momenta conjugate to the coordinates are obtained by

differentiation of the Lagrangian with respect to the corresponding velocities:
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X p)‘.=0
i

py=X2 Pg=0

g 3 0

pn_k‘l

pm_ls

No velocities appear in the defining equations for the momenta and thus all of
these equations represent primary constraints. Further, all of the constraints
are independent. The constraints are labeled as follows:

P =Py Ay =0 ‘Ps=px1=° 011 =Pg=0
3P~ A3 8™ Px,
(p =p ..)\ =0 © =p =0
4 n "4 9 A4
P5 =Py ~A5 =0 ©10 7Py, =°
The function H1 is selected to be
= 2&008_0!
Hy= ) £+ 2,1 ax sm9/ (52)

- (av _.L____QLC S08 & ¢os 9\—)«5ﬁcos2 a-1
which is consistent with Eq. (22).

To obtain the expressions for the¢'s, it is necessary to obtain the P.B.'s
of the ¢'s among themselves and of eache with H;. The P.B.'s of thep's

among themselves are
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[(pl’ @6]= - [(pss (Pl:] =-1
[(PZ’ (p7 ]=—[(,D7, (02] =-1

[og: 0g] =~ Logs 0g]=-1 all other [o;, (pj] =0 (53)

[(P4’ (,09}= - [(pg’ @4] =-1
lo5: 0101=-Lo190051=-1

and the P.B's of the ¢'s with H; are

2 2
_L. 3%y . %
[og: Hid =23 —5+ X 330y
X :
2 2
. 3%y 3%y
[soz’ H1]_>‘3 3Xdy * Ay ayz

[(,039 H1] = - )\1
[(p4’ H].] = - AZ

2
[y, Hy 2 cBcos o (A3 5in6+), cos )

[@6’ H1] = -F
oV cgcos2
I:(ps’Hl]:ax - m o Sin e

2
&pg,H1]=g—;7— E‘Bﬁcoi_a cos 6

[(ploaHl] = B C:()S2 o

2
m
2
[‘pll’ H1] = - %0\3 cos 6 - >\4 sin 6)
[¢12,H1]=Bsin 20({%(7\3 sin 9+>\4 cos 6)->\5} (54)

The time derivatives of the ¢'s are obtained by making use of Eq. (40) and they

must be equated to zero:
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2

. 32v . 3%v _
¢y = -ugt g ax2+>‘4axay"°
2 2

o = 3V 3V _
Pp=-Ugt A3 xayt M 2 =0

g™ ~ug =Ry =0

2
+9§—CQS—Q()\3sin6+)\4cos 6)=0

®5 =~ "10 2 (53)
m
Pg= U-£=0
P7 =uy-n=0
3V chosZa
Pg=Ugt3x g sm08=0
3V ¢ 0052
(p9=u4+—3’—- - cos 0=0
. — 2 —
q)lo—u5+gcos =0
¢ 8 cos”
®11" " m (kscose—k4sm9)=0
. — - c 0 —_—
(plz—Bsmza{—ll—l()t351n9+)\4cos6)—ks}—0

It will be noted that the first ten ¢'s give immediately the first ten u's. No
u's occur in the last two and hence the requirement that ¢, and ¢,,, vanish

leads to two secondary constraints:

29



Xy = cos2 o ()\3 cos 0 - Ay sin6) =0
(56)
Xy = sinZOz{—I(;—l (>\3 sin 6 + X4 cos 6) - >‘5} =0

where the factors ¢, 8 and m, known to be nonvanishing, have been omitted.
These secondary constraints are, in a way, somewhat embarrassing since
they both appear as products, so that further discussion requires consideration
of the various combinations in which the factors may vanish, The occurrence
of this problem is, however, not surprising; it is just the way in which the
"switching function'in the conventional theory would first appear. To complete-
ly specify the "switching function" requires consideration of second variations
to distinguish minima from other stationary values of the time integral of the
Lagrangian. There is no provision for this in the Dirac theory, and further
discussion of this point will be deferred. First, the Dirac Hamiltonian is
obtained and in the next section the way in which the Maximum Principle

complements the Dirac theory is discussed.
The ways in which the vanishing of the X's may be guaranteed are:

Case 1. cos =0
Case 2. sing=0, )\3cos 6-)\4sin6=0
Case 3. )\3=>\4=)\5=0
Case 4. >\3=>\4=sina=0
a_n C . oy =
Case 5. X3cos6—)\4sm6 =0, -7 (g sin 6 +x, cos 0) )\5 0

For a complete analysis of this time optimization problem, each of these
possibilities should be examined in detail with recognition of the fact that the
nature of the problem may require the use of different Hamiltonians for differ-
ent portions of the final optimum trajectory. Since, however, the purpose in
this report is merely to illustrate the application of the Dirac technique to op-
timization problems, only the first two possibilities are discussed. These
correspond to the conventional solution of the problem by the Pontryagin

principle. It might be mentioned that the occurrence of possibilities 3,4, and 5
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a A% £
>‘4 axayj

TP O‘

- - A

1P3 "% Py 2

m
+-klcos 6+)2sin6
)\Ssin6+>\4cos6 Pg

Pr2 Q‘3 dX0dy

2

BV>
+ A, —
4ay2

BV

2
+ 9—*3—0—9-&&3 sin 6 + >\4 cos 6) Pys

(64) (cont'd)

The form of this Hamiltonian differs from that of case 1 only in the Pg term.

It will be recalled that it was stated in Section IV that the Dirac Hamiltonian

is not unique and that terms whose first variation vanishes identically may be

added at will.

One way in which differing Dirac Hamiltonians could be obtained

would be to start with the \'s in H1 replaced by the momenta conjugate to the

state variables, which is consistent with the first five primary constraints.

Had

this been done, the resulting Dirac Hamiltonians (59) and (64) for cases 1 and 2

would have Py p p£ and p instead of Ay )\2 )\ and >\ , respectively. Itis a

relatively easy matter to show that the difference between these Hamiltonians does

indeed have vanishing first order variation.

D1 between the Py1 terms:

2
3"V
D.=py, 1A -pP)—S+ @R
1 Al{ 370 2 e
for which the variation is
5D 6p>\1{()t3 py) 2 5 V+(>\4
bPy 0% - 5p€)a v,

Consider, for example, the difference

2V
Pp) 3x3y (65)
3’V
17) axay\JL
2
37V
T 06Xy - 0P 353y (66)

+ g -p)(ﬁ”)+(x4 p)(aaxay )}
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The constraints ¢, and ¢ gua.ré.ntee that the first bracket vanishes and the con-
straint ®g guarantees that the Py1 term vanishes independent of the variations in

Py1 )\3, pg, x and y. The remaining terms in the difference of the two HD's

are treated similarly. Thus, the HD obtained is essentially independent of whichever

of the two forms outlined above is selected for Hl'

The fact that any term of vanishing first variation can be added to Hp
without changing its essential character may now be used to transform the
Hamiltonians (59) and (64) into the same form. This is achieved by eliminating
the variables 6 and Pg- It is readily verified that one of the functions

=p, sin 0 + coseaf 2 +p 2 67

1= P P [ Pe2 * Py (67)
2

vanishes for case 2 as a consequence of the )_<2 constraint. Further, the varia-

tion in g is given by

gn N
Ggl (smOZF F———)ﬁpg*‘(COS e 'F—-Z_—Z—/Gpn
Py TPy VPg TPy
(68)

+@£ cose—pn sin6) 66

and again from the SZZ constraint the coefficients of 6 p, , épn and § 6 vanish.
Finally, since any function f multiplied by g will also have vanishing first order
variation, it follows that p, sin 6 + pn.cos 6 may be replaced by =+ P 2 +p172

in the Dirac Hamiltonian (64). Since 6 and hence 0 are undetermined by the
Hamiltonian (59) for case 1, the same substitution may also be made there.
The Hamiltonians now differ only in their Pg terms, and since the dependence
on B has been essentially replaced by p ¢ and p,'7 these terms may be omitted

without loss of generality.

Anticipating the results of application of the Maximum Principle, it may
be noted that for case 2, it will be required that p £ sin 6 + p_ cos 6 must be

n
positive. Using this condition, one obtains the Dirac Hamiltonian as
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: 2
- .3V 3V cBcos g 2 2
Hp=py £€+p, M Pp 3% n3y ' m «/pg Py

2 2
2 3°V 3°V >
~ Py, B cos 0"1+pxl<pgaxz+pnaxay
(69)

2 2
37V 22V
" P2 <Pg ox3y +pnay2/' Py Pag ™ Py Py

2
cfB cos 2 2
T WPy TPy Pys

m

and, finally, at this stage the terms in P, ; may be omitted in the same way as the
Py All of the essential information is carried by the state variables, their

momenta, and the control variable ¢ with the Hamiltonian

_ oV oV
HD_pxg-l—pyn_pgax nay

2 (70)
¢ B cos 2 2 2
+ - /pE +pn-pmﬁcos oa-1

which is canonical in all the variables. This is a very compact form for the
Hamiltonian. It has, however, one disadvantage. The momenta p, and p,n
enter irrationally. There may, therefore, be some advantage in retaining the
dependence on 0, together with the two forms (59) and (64) for the Hamiltonians

corresponding to cases 1 and 2,respectively.

V. INCORPORATION OF THE MAXIMUM PRINCIPLE
IN THE DIRAC FORMULATION

The Dirac Hamiltonian obtained for the time optimal problem described
in Section IV was written in a number of different forms. It was noted that the
terms in the momenta conjugate to the state variables were just the Pontryagin

Hamiltonian
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2
oV cpBcos o _.
Hp =P, £ +P, 1 -P 3% p— sm9>

(71)

2
2
- n(g;’_cj;‘OS 2 cos 6>—pm‘Bcos o

so that corresponding to Egs. (59) and (64)
2 2
_ VL, 2V )
Hp=Hp -1+ pu("s 2 A 43x3y

22y 3%y >

*Pyg Xsaxa +"4g‘):§)"‘1p)\3')‘21’>\4 (72)

2 ~
C C .
+—%§_g<>‘3 sin 6+ cos & )py 5+ 1y, Py

with

u, , undetermined for case 1

11
(73)
- )\1 cos 8+ )\2 sin®

1° >L3 sin 6 + >\4 cos O for case 2

u

Now the Pontryagin principle requires that HP be maximized with respect

to the control variables. Since the only way in which HP and HD differ in their
dependence on the control variables is in the Pys5 term in HD’ and since Pys
vanishes, maximization of HP with respect to the control variables implies the
corresponding maximization of HD and conversely. The first condition for

maximization is that

°fp _"Hp
30 da

(74)
26 o)
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These conditions are guaranteed for HD which has been so constructed that the
Hamilton equations will yield vanishing time derivatives for pa and Pg» the
momenta conjugate to o and 6. It was these conditions which led to the secondary
constraints with five cases to be considered. Only the first two cases, corres-
ponding to the conventional Pontryagin formulation of the problem, have been

analysed in detail.

In the conventional treatment, the bounds on m are not explicitly written’
into the Lagrangian. To obtain the conventional Pontryagin Hamiltonian, one
could just omit the cos2 o factors in Eq. (71) and apply later the condition that
the fuel flow, represented by g has lower bound zero and upper bound, say,

Bm ax® Thus, the conventional Pontryagin Hamiltonian can be written as

AV 3V S
Hp =, £+0, 1 - B S5 By 3y + 5 (py sin 0+ pyoos 6)-p, 8 (75)

with
0= g=sp .. (76)

In this form HP varies linearly with 8 and hence the maximum of HP with respect
to g will be on one of the bounds, and which bound is to be used will be determined

by the sign of the switching function
- - ) -
k - \pg sin 6 + p17 cos 9) P (77)
according to the criterion that
B=0 ks0

(78)

B=8 0 k=20

The maximization with respect to 6 requires that
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BH

;F( cos 0 -p sm6> 0

9 g n
P (79)
H_ c8( .
o B _ sin0+p_cos 6)<0
36 m \P 3 pn >
The first of these conditions implies that
P sin9+p17 cos 6= p€2+pn2 (80)

and the second requires that the + sign be used in Eq. (80) for 8 # 0.

It will be noted that the Dirac formulation with the bounds on ni included
in the Lagrangian requires (for cases 1 and 2) that the bounds of the fuel flow be
used and that Eq. (80) hold. The selection of the positive sign in Eq. (80) and
the operation of the switching function according to Eq. (78) are the essential addi-
tional information obtained from the Maximum Principle. It should be mentioned
that if the bounds on rh were explicitly included in the Pontryagin formulation
(i. e., by writing the constraint on m as 8 cos2 o) the same five cases for investi-

gation would appear as for the Dirac theory.

The analysis of this time optimal transfer problem has shown that the
Dirac formulation can be used instead of the Pontryagin formulation and that
the Maximum Principle can be applied to the Dirac Hamiltonian. It is shown
in Section VI that these conclusions can be extended to a general class of optimiza-

tion problems.

Vi. THE DIRAC FORMULATION FOR A CLASS OF
OPTIMIZATION PROBLEMS

The construction of the Dirac Hamiltonian for application to more general
optimization problems is not difficult to carry out. Suppose, for example, that
the optimization problem is to minimize the time integral of a function fo x,y)
where x represents the state variables X1s Xgseees Xy subject to the differential

constraints
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% =1 &x,y) (81)

and y represents the control variables Vs Ygs o« sVke It will be assumed that
any bounded control variables are replaced by an expression of the form

2 . 2
Y min €°8 Ot Yy ay SN O (82)

where y and Ymax 2F€ the bounds on the control variable. A similar form

min
will be employed for any bounded state variable with the differential equations
suitably rewritten in terms of the parameter ¢. Thus, it may be assumed that

the state and control variables are all unbounded.
Introducing Lagrange multipliers, the Lagrangian for the optimization is

NI
L=f_ (x,y)+ > N (X - 1 (x,y)> (83)
i=1

with coordinates X1y XgseensXys Fys Voseoe sV )\1, )\2,. . >‘N The momenta

conjugate to these coordinates are

pxi=>\i i=1,2,3,...,N
Py; =0 (84)
pyk'_‘o k=1,2,...,K

d; =Py =0 (85)

o.‘k=pyk=0

As before, the function H1 is defined by
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12

=zpiqi-L=>: ANt (86)
i i=1

and the Dirac Hamiltonian is given by

N N K
- \’ \
Hy=H +) wo;+) v;d; +> wy W, (87)
i=1 i=1 k=1
‘ where the u's, v's and w's must be suitably determined from the requirement

that the time derivatives of all primary and secondary ,constraints must vanish.
To obtain the time derivatives of the primary constraints, use is made of their

P.B.'s among themselves and with H,:

:‘Pi’ “’kj '_'!:‘f’i’ “’k] =[<Pi’ (\oj—J =|:¢>i’ zbj] =|:wk, wJ =0

0 ¥ 1—-[4) «al ]=-6

e T =00 5 +:_f‘gi (88)
5, HJ:-

v, By |=-) xj%%{ ;—‘:{

i

from which one readily obtains

K
Z [‘D ‘P]] _J"I.‘Pi"bj] W k[“’ “’k'"“’l
=1 k=1

(89)

N N K
It I ‘Pj] +) Y [‘l’i' d’j:! +), W [bp @y 1= Yy
=1 =10 k=1 .

(cont'd on next page)
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N N K
Zuj [w£,<pj]+z v [, gbj]+z w | @, w, |=0 (89) (cont'd)
- :

1 j=1 k=1
so that
— of, af
. _ o i, _0_
b3 Yi ij ax.+ X 0
. i i
]
z])i=ui—fi=0 (90) ‘
- af. of
Y= 1, _0_
) Z)‘j ay£+ay 0
j 2

From the ¢ and  equations one obtains the u's and v's:

% o
,>‘j axi+

J

(=}

Q
o

X

<
e
]
I
—

(91)

u, =f,
i i

The & equations do not contain any of the undetermined multipliers U Vi Wi
and hence are secondary constraints X 4

2 2y
= - + ——=
Xg =71 Xj oy, 9y, 0 2)

]

whose P.B.'s are:

2 2
-Xz"”i}"}?j;{f%&‘*aaioa
; i%y i°Yy
(93)
P w]=-i£i—
Xg» ¥ v,

(cont'd on next page)
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2
" af Bfo

‘_Xf, 1 - —Z)\] 3y Y, * AT
J

[xz’ H1j=o

so that
Ii < § Bzfj Bzfo N
XﬁZ L oLN axiay;axiayz J
i=1 =1
Ny K N 3% 2°1,
-Z Vla—§_+>_; Wkl.._z )\16 3 +a 3 J
i=1 L =1 j=1 O¥KOY¥, O¥,°¥k

(93) (cont'd)

(94)

These equations may or may not lead to further secondary constraints depending

32f,

on the —i
oYY,

. At any rate, completion of the calculation of the Wy and deter-

mination of the existence of first class constraints is a routine matter for any

particular problem. The Dirac Hamiltonian becomes, on using the expressions

for the u's, v's, ¢'s, Y's and w's

N N N
=\ v N N
HD—-Z Ajfj—f0+L u]‘pj+ZJ v.¢j+Zwkwk
=1 =1 =1
N N
=Y e 4\
=L NGl G0N
=1 j=1
N N
N b f. af
- 4 ° i 0 ]
>_‘ [\Z )‘iax.> o%; pXJ+>wk Pyk
1 =1 ]
N N 2, N afy
=/ Pyj f]‘fo‘Z >‘1p)\] ax > Py\j ox, Bx Zwkpyk
=1 1,=1 ! !

= Hp, + terms linear in Py and Pyk

(95)
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where some of the w, may vanish and others may be indeterminate, indicating the

k
presence of first class constraints. The function HP is
N
Hp=-f,+ >_J Py §; (96)
=1

which is consistent with the Pontryagin formulation.

This Dirac Hamiltonian may be used in place of the Pontryagin Hamiltonian
in the Maximum Principle, since any contribution of the terms in p>\j and pyk in .

the application of this principle will contain p)\j or pyk as vanishing coefficients.

VII. HAMILTONIAN TECHNIQUES FOR THE SOLUTION
OF OPTIMIZATION PROBLEMS

In the preceding sections a Hamiltonian formulation for optimization prob-
lems has been developed. It has been applied to a particular optimization problem
and it has been seen that the Maximum Principle can be incorporated in the formu-
lation. Further, it has been shown that this formulation can be generalized for
other optimization problems. In this section a perturbation theory for the solution
of optimization problems is outlined. First, however, one comment should be
made on a defect of the method.

This defect is that the constraints on the initial and final values of the
state variables have not been explicitly incorporated in the formulation. Just
how this might be done is far from clear. It may, however, be noted that in-
corporation of the bounds on fuel flow leads to secondary constraints which imply
that the fuel flow operates on its bounds for cases 1 and 2 without recourse to the
Maximum Principle. Explicit inclusion of constraints on the initial and final ‘
values of the state variables might lead to additional secondary constraints on
the control variables which would automatically fit the final solution of the
Hamilton equations to initial and final values. It will be recalled that, in
addition to cases 1 and 2, which have been discussed in some detail, cases 3, 4,
and 5 may occur. These cases probably correspond, in some sense, to singular

solutions of the problem which are significant only for particular sets of initial
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and final values. Their treatment and interpretation would be greatly clarified

if the initial and final values were made an integral part of the formulation.

It should be mentioned that the theory developed in this report assumes
that a complete set of initial and final values has been imposed on the state
variables. No difficulty is anticipated in relaxation of this limitation. Incorpora-
tion of transversality conditions into the Dirac formulation appears to be straight-
forward. This would, of course, have to be done for application of the theory to

orbit transfer problems.

The theory as developed in the preceding sections is in a form particularly
suitable for the Hamilton-Jacobi approach. The Hamilton-Jacobi equation de-
rived from the Hamiltonian HD in the forms (59) and (64) would be a linear first
order partial differential equation. Neither of these equations separates. One

could, however, undertake a perturbation procedure and write
H.=H,.+H 97)

with HDO selected to represent a solvable problem. The selection of HDO would
depend on the particular problem to be solved. In general, one undertakes to

split HD
some sense, small compared with Hpyoe It would also be desirable to choose
Hpo
easy to satisfy all of these conditions on HDO’ as will be seen from the examples

so that not only is the HDO problem solvable, but also that HD1 is, in
in such a way that its Hamilton-Jacobi equation is separable. It is not

discussed below. Considerable further analysis is necessary before a satis-
factory perturbation theory for optimization problems can be worked out in de-
tail. Two ways in which the theory might be applied are:

Low Thrust Problems

For such problems it is assumed that the maximum thrust is small com-
pared with the gravitational forces acting on the vehicle. In addition, some of
the gravitational forces might be small in comparison with others. Thus,

H. , might be chosen to include all terms involving 8 (since if the thrust is

D1
small, B is small) as well as those terms involving the small gravitational
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forces. Then HDO would represent the optimal trajectory for a vehicle moving
under a gravitational force derivable from a potential VO' If the potential V0
is just the two body potential then HDO represents the classical Kepler problem
in a rather unconventional form. For the problem discussed in Section IV, for
instance, there would be many more variables than are normally associated
with the two body problem because of the presence of the p's. Further, the
Hamilton-Jacobi equation associated with HDO does not separate for this case.
Since, however, the solution of the two body problem is well known, it should
be possible to somehow construct a solution of the Hamilton-Jacobi equation
which could be used as a basis for a perturbation theory for the low thrust

problem. *

High Thrust Problems

In this case one could select HDl to include all terms involving V since
the gravitational forces would be assumed small compared to the thrust. The
Hamiltonian HDO would then represent the optimal trajectory for a vehicle with
no forces other than thrust. The associated Hamilton-J acobi equation does not
separate for this case either. As in the low thrust problems, however, the
solution for the HDO can be obtained in closed form and is available for use in

the same way as the Kepler problem for the low thrust case.

It thus appears that the development of a Hamiltonian perturbation theory

for optimization problems is feasible. Further work in this area is planned, and

results will be submitted as they are obtained.
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INTRODUCTION AND SUMMARY

This is the final report on contract NAS 8-11020 entitled "Optimum
Tra jectory Study".

In this section we will try to give a verbal account of the problems
considered, the reasons for considering them, and the main results ob-
tained. The remaining sections, while having independent introductions,
will contain the mathematical analysis.

The major objective of this study was to examine the use of Hamilton
Jacobi partial differential equations in determining fields of optimum
trajectories and to study sufficiency conditions. Since a great number
of optimal control problems can, with a slight reformulation, be posed as
time optimal problems, our attention is focused throughout on problems of
this type.

If given initial data, say time t = to’ state x = X, for a time
optimal problem, the reachable set (in Euclidean (n+l) dimensional time-—
state space) is defined to be the set of all points (t, x) with time
t E:'to and state x such that it can be attained in time t by a trajectory
of the dynamical system with an admissible control. Under very mild con-
ditions on the dynamical system equations and the control set; it is
known that a time optimal point to point transfer will lead to a tra-
jectory which lies on the boundary of the reachable set. Conversely,
trajectories which lie on the boundary of the reachable set are excellent
candidates for being time optimal for some point to point transfer, and
thus conditions which single them out are of interest. Now a point is on
the boundary of the reachable set if in every neighborhood of it there are

points not in the reachable set; i.e., points not attainable by trajectories
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of the dynamical system. This leads one naturally to notions of
controllability.

Following the definition of Kalman, a linear system is said to be
completely controllable at time to if every state can be attained
(with afa control) in finite time by a trajectory of the system having
arbitrary initial data (t;o9 xo)e Thus one can examine whether the terminal
data has been chosen so that the mission is possible. It is of further
interest to define local controllability, i.e., a system is locally con-

trollable along a solution trajectory $(t) if for some t >t all

1
points in some state space neighborhood of }?(tl) are attainable in

time tl by trajectories with admissible controls. Obviously trajectories
along which a system is locally controllable cannot remain on the boundary
of the reachable set, and hence this becomes a test for optimality. It
might also be remarked that while for linear systems one could expect
global controllability results, for nonlinear systems it is natural to
expect only local results.

In Section I, the Kalman criterion for complete controllability for a
linear system is derived in a simple manner (corollary I.l) and an ex-
tension is obtained for a special form of nonlinear system (Theorem I.2).

In Section II, the nonlinear system ;(t) = g(t, x(t))+H(t, x(t))u(t),
X an n vector, H an nxr matrix, u and r vector valued control with
l=<r =<n, is studied. If B(t, x) is an (n-r)xn matrix, of maximal rank,
such that B(t,x)H(f,x) = 0, the local controllability of the above system
is shown to be closely related to the integrability of the pfaffian system
B(t,x)dx - B(t,x) g(t, x)dt = O. In particular, the above nonlinear

system is defirfed to be completely controllable if the associated pfaffian

system is not integrable. Theorem II.1l then shows that in the special
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case of a linear system, this definition yields a criterion for complete
controllability equivalent to that of Kalman. This new criterion is use-
ful since it does not depend on the knowledge of a fundamental solution
matrix for a time varying linear system. Its use is demonstrated by ob-
taining the result that an n dimensional system, formed from a single nit
order linear time varying differential equation of the form x(n)(t) +
al(t) x(n-l)(t) + 6 o o * an(t) x(t) = u(t), is completely controllable.
(Here u is a scalar valued control). This result was previously known if
the functions ai(t) were constant.

The remainder of section II deals with local controllability inla
neighborhood of singular arcs. It is shown that local tests, which
depend on examining the controllability of the variational equation'along
a singular arc will always be non-conclusive. Along an optimal singular
arc the system is truly not locally controllable, however it is shown by
example (example II.2) that singular arcs can exist along which the system
is locally controllable. These can be thought of as inflection points in
function space, of the functional (time) which is to be extremized. They are
analogous to inflection points which arise when extremizing a real valued
function F on a manifold in Euclidean space; i.e., non-extremal points at
which the map F induées on the tangent space of the manifold into the tan-
gent space of the reals, vanishes.

These arcs are singular also in the sense of the classical calculus of
variations, hence the Hilbert differentiability condition fails to hold along
them, and classical sufficiency conditions fail.

In section III, the study of feedback control via the Pontriagin maximum

principle and Hamilton Jacobi theory is begun. Often the feedback control
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which the maximum principle prescribes, is discontinuous in the state
variables, which in turn leads to a Hamilton Jacobi equation with dis-
continuous coefficients. This is impractical both from a theoretical and
computational viewpoint. The first part of section III deals mainly with
the reason for this discontinuity, and yields conditions such that the
maximum principle would prescribe a continuous or even Cl (once continuously
differentiable) control. Theorems III.4 and III.5 then show that whenever a
control problem merely satisfies the conditions of Fillipov for the
existence of an optimal control, there exists an approximate problem (the
precise definition of this precedes theorem III.4) for which the maximum
principle gives a C1 control, an; such that for any given € >0, an
optimal trajectory of the original problem will be in an € neighborhood

of that for the approximate problem.

The remainder of section III deals with the Hamilton Jacobi theory for
these smooth approximate problems, and for the special case of the control
appearing linearly, an easy construction for the approximating problem is
shown, while an example (example III.1l) is worked out in detail to
demonstrate the results.

Two sets of references are given, the first for sections I and II, the

second for section II1I.
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T w7

CONTROLLABILITY AND THE SINGULAR PROBLEM

INTRODUCTION TO SECTIONS I AND II

The concept of complete controllability of linear systems was
introduced by R. E. Kalman [l]. It is part of the purpose of this
paper to extend the concept to nonlinear systems, with control appear-
ing linearly. All systems considered are of this form.

Geometrically, a linear system is completely controllable at time
to if any state can be attained in finite time by a trajectory of the
system having arbitrary initial data x, at time to. The motivation for
the extension of this concept to nonlinear systems came largely from
results obtained in [2] and from the geometric interpretation of non-
integrability of pfaffians given in [3] and [4]. In particular, Cara-
theodory gives an argument to show that if, for a single pfaffian equation,
there are points in every neighborhood of a given point which are not
"reachable" from the given point by curves satisfying the equation, the
equation is integrable. This result was generalized to systems of
pfaffians in [#], There is a difficulty in applying these ideas to
pfaffian systems which are quite naturally associated with control systems
having control appearing linearly. (See § II.) The reason for this is that
usually the independent variable t appears explicitly in the pfaffian
system, hence its integral curves, which can be related back to solutions

of the control system, and are used to connect neighboring points to a
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given point, must have t parametrized as t@S’), a monotone function of O .
This is not the case in the proofs in [3] and [4], and with this restriction,
in general the results of these papers are no longer valid.

The relation between singular problems and controllability arises
quite naturally from the pfaffian approach and can be anticipated from
results obtained by LaSalle in [5]° In § I1 we define the concept of a
total}y singular arc, i.e.y, an arc satisfying the differential constraining
equations, for which there exists an adjoint vector such that the maximum
principle yields no information as to the cptimality of any of the com-
ponents of the control along this arc. In particular, if the system
were linear and admitted no totally singular arc, the system would be
proper in the sense of LaSalle [5] and completely controllable in the
sense of Kalman [6]° BEven if the controls are merely restricted to be
c;f; (lebesgue square‘integrable) functions, it is shown that totally singu-
lar arcs can exist and comprise some or all of the boundary of the attain-
able set, thereby being cptimal trajectories for certain time optimal
control problems. These are also precisely the arcs along which the system
need not be locally controllable, i.e., if we assume initial data X, given
at time tO, there may exist points in every state space neighborhood of a
point @y(tl) of a wotally singular ars qyg which are not attainable in
time t1:> to by trajectories of the system withéig controls. Here qy

denotes the solution of the system with control v. Precisely, if for every

t, > t, there exist pcints in every state space neighborhood of ?y(tl)’
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which are not attainable with &, control in time t;, the arc (p" is totally
singular. However it is shown by example that there do exist totally

singular arcs about which the system is locally controllable.

§ I. COMPLETE CONTROLLABILITY FOR LINEAR AND MILDLY NONLINEAR SYSTEMS

Throughout this section H will denote an nxr matrix valued function
of t, which is in5€2 [to, tl] for any given finite tl > to' . Controls
will be cfg, vector valued functions, We begin with the following basic
Lemma.

Lemma I.1 A necessary and sufficient condition that there exist an

rxn matrix valued function V(t) in 5(’ t, t | s such that for some
2 Lo 1

t
1
1> Lo’j H(T)V(T )dT is non-singular, is that for some ty >t

t
o

t
1 )]
f H(’)")IIl (T)AT is non-singular.

t
o

Proof Sufficiency is immediate by choosing V(T ) = HT(T ). To show

t
> t_,such that j VH(TOW(T)AT is
t .Y
non-singular, but f H(T )HT(T )a T is singular for all t > t,» in
t
© This implies there exists a constant vector cf O

necessity assume there exist V, t

1

particular‘ ? ) t‘lo
t

such that c<f H(T)HT(T)dT) ol 0, and since H(T)HT(T) is positive

t
o]

semi-definite, we obtuin c¢H(t) - O almost everywhere in [to’ t1] + Thus
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t
1
f H(T W(T)aT = O which contradicts the non-singularity of

0

Y
f B(T)W(T)aT. |

t
o
We next consider the system
(1-1) (%) = H(t)u(t) , x(t)=x, u€ X [t , t ] . .
o o 2Lt0" 11
Define

t
1
T
M(toﬁ tl)'-—:‘-“ J' H(T)H (T)dT °
t
o
Theorem I.,1 A necessary and sufficient condition for the system (1-1)

to be completely controllable at to is that there exists t. > to such

1
that M(to, tl) is non-singular.
Proof: (Sufficiency) Let X be any given point in En, Puclidean n

space. We will show X is attainable from X at time tlo Indeed pick

. Y -
HT(t)§ R §€~T E®, We desire X = x(ty) = x(t,) +<ft H(T )HT(T)dT>§
M"l(to,t]‘) (% - x(t_))e ©

(Necessity). Assume M(to,, tl) is singular for all t

[

u(t)

or ¢

]

>t . This
1 o
implies (see proof of lemma I.1) that there exists a constant vector .
c £ O such that ¢ H(t) = 0 p.p. Since x is arbitrary, let it be such
that ¢ o X, = 0, We will show the point ¢ is not attainable from X e
t
Indeed suppose for some u and t,; ¢ = X_ +j 1 H(T )u(T)aT . Then
t

o]
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t
1
CeC= “0”2 =Co X + cj B(T)(T)aT = 0, a contradiction to
t

o
the fact that c+f 0. [}

Corollary I.1 (Kalman) The linear system

(1-2)  x(%) = A(t)x(t) + H(t)u(t) , x(t,)) = x,

is completely controllable at to if and only if
(tl

j é (to,T (T )HT(T) @T (to,T)dT is non-singular for some t, >t

t
o

Here § (ts,T ) denotes a fundamental solution of the homogeneous system

x(t) = A(t) x(t).

Proofs Make the transformation y(t) = § ‘l(f’ to) x(t). Then x

satisfies (1-2) if an only if y satisfies

(1-3) () =9 (s ¢) B(t)u(t), 5(t)) = x_.

(Note ® (to, t) = ¢ gl(t, to).) From the transformation, it

follows that the system (1-2) is completely controllable if and only if

°
o

the system (1-3) is completely controllable, i.e., from theorem I.1l that

there exists a t1> 1:0 such that

5
&

1
LG KT T BT (6 DAT s non-singutac.

o
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Some special results for nonlinear systems

We next consider the nonlinear system
(1) x(5) = ety x(8)) + Be)u(t),  x(v )= x,

with the assumptions: i) |gj(t,x) l <My j=15 25 ooy N
ii) Iga(tpx) - gj(tg'i)lfg m "x - i“ o J =15 2, 0eoy no iii) g is

continuous as a function of t for each x.

t
1
Again let M(to,tl) =L H(T)HT(T)dT .

Theorem 1,2 A sufficient condition that the set of points attainable
by trajectories of the system (1-4) with 352 control be all of E™

that M(to, tl) be non-singular for some t, >t .

Remark Rather than state the theorem in this manner, one might con-
sider merely saying that the system (1-4) is completely controllable at
too However, this notion has not been defined for nonlinear systems; and
it does not seem reasonable to this author to define it in such a global
fashion for these systems.

Proof For arbitrary u, (1-4) has a solution designated qflwhich

satisfies
t t
(1-5) \‘Ou(t)z' X, +f T, (PU(T))dT +J' H(T )u(T)aT .
to %
Let ¥ be any given point in E®, We desire a control such that for some

point finite t,> t_ %? (t ) = It suffices to consider controls which
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come from a finite dimensional subspace of ., in particular the controls
considered will be of the form u(t) = HT(t)§ where § € E®. Hence the
notation ()0§ rather than Lpu will be used.

Define a mapping & s E"—=E" as follows:
t

1
Let K (§)E (T, (P§(T))dT , and define
1;o
. f:"'(g)E Mt , t) ['i - o((g) -x ] From (1-5) it follows that
o’ "1 ol”®
a fixed point of & will yield a value § such that (p (tl) = X.
It is well known that with the conditions imposed on g [7, the T.4 -
Chapter I] ’ (.P is a continuous function of § in the topology C[to, tI]’
i.e., the topology induced by the supremum norm. Thus X ( § ) is a continuous
function of § s and 8'.'/is a continuous function of § .

< «—|& ) < &

Letting ”5" = f Igll s and "M-lll be any matrix norm, since Igjlgn,
i=1

for any &, (€] < nle, - s s

Letting K = H M'l(to, tl)“ [H§“+ 'nM(tl - to) + leo "] , it follows that

We next show that there exists a K such that " §

for any §, “@’(g)” < K, hence in particular Zrmaps the ball

§ € g% ” £ “ < K} continuously into itself. Thus a’has a fixed point. l

‘ Remark The result obtained in this theorem is not surprising in view of
. theorem (I.1) and the boundedness condition on the vector g. Also the

condition M(to, tl) non-singular for some t1> to is much stronger than
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it need be, For example, if we consider a linear system of the form (1-2)
and H(t) is a column vector with one component zero, then M(to,tl) is
singular for all tl > to’ yet the system can certainly be completely

controllable.

é II. NONLINEAR SYSTEMS WITH LINEAR CONTROL; THE SINGULAR PROBLEM

In this section, we consider extending the notion of complete con-

trollability to systems of the form
(2-1) x(t) = &(t, x(t)) + B(t, x(¢))u(t)

where g is an n-vector, H an nxr matrix, while u is an 5f2 control vector,
It is assumed that g and H are C1 in all arguments. Throughout, the
stipulation 1< r < n is required to hold.

Let B(t, x) be a Cl, (n-r)xn matrix with rank (n-rank H) at each

point (%, x) in some domainp@. of interest, such that

(2-2)  B(t,x) H(t, x)=0, (t, x)€ Al

Since T < n, we know that rank B =1 for all (t, x).

With the system (2-1), associate the pfaffian system

(2=3) B(t, x)dx - B{t, x) g(t, x)dt = 0.

Let b be an arbitrary linear combination of the rows bU of B,

taken with Cl scalar valued coefficients 0<U (t, x), dceoy
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vV
b(t, x) =:§: cKl/ (¢y x) b~ (¢, x). Throughout, b will be used to
denote such a linear combination which is not identically zero.

Definition II.1 The pfaffian system (2-3) is integrable at the point

- TN . X 1 .
b
(t, x) if there exists a C~ scalar valued function \[/(t, x) and an

€ > 0 such that for some b,
\Vx(t, x) = b(t, x), \Vt(t, x) = -b(t, x) « g(t, x)
for t<t<t +€ ’ |x—;'<€.
Essentially this states that for some b,
(2-4) ©v(t, x)ax - b(t, x) * g(t, x)dt

is an exact differential in a "neighborhood" on (?, ;). It should be
noted that any integrating factor can be included in the coefficients
of the linear combination of the rows b v .

The notion of integrability of a pfaffian system is, of course,
related to the property of completencess of an associated system of partial
differential equations. To show the relation, let C(x), x € En, be a
smoct™ (n-r)xn matrix, and K(x) a smooth nxr matrix, both of maximum

rank, such that C(x)K(x)= 0. With the pfaffian system

(2-4) Cc(x)dax = 0O

we associate the system of partial differential equations KT(x) -aa—fiﬁ = Q.
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Each row ki of KT can be considered as defining a vector field Xi which

locally generates a one parameter semi group of diffeomorphisms, {Ti(t)},
see for example [8, Pe 10]. In turn, such a semi 'group determines a
vector field., If for each i, J = 13 2y ees, r and for all arbitrarily
small fixed 1, the vector field determined by {Tj(7') Ti(t) Tj(-7')}

is linearly dependent on the fields Xi, the system of partial differential
equations is said to be complete. If it is not complete, the number m of
linearly independent fields formed in this manner is called the index of
both the pfaffian system and the associated partial, differential equation
system [4].

From the results in i#], it easily follows that the pfaffian system

(2-4) is integrable (definition II.1) if and only if the index m is such

that m+r <n. If the index m is such that m+r = n, Chow [4] shows that

there is a neighborhood of a point xof.En such that all points in this
neighborhood are attainable by curves satisfying (2-5). From the view-
point of local controllability for a control system, we can interpret this

as follows. If the pfaffian system associated with the control system

(2-5)  x(t) = K(x(t))u(®) , x(t,) = %,

. . . . : n
has index m, where K is a continuous nxr matrix function of x €E

with constant rank r, and m+r = n, then every point in some neighborhood

of x is attainable by trajectories of (2-5) with measurable controls.

Indeed, since all points in some neighborhood of x, are attainable by
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absolutely continuous curves satisfying C(x,(t)) x(t) = O almost every-

where, we must only show that such a curve also satisfies (2-5) for some

control u. But C(x(t)) x(t) = 0=>x(t) is a linear combination of the

columns of K(x(t)), since CK=0. Thus there exists u(t) such that

x(t) = K(x(t))u(t) for almost all t. Since K has rank r, it has a con-

tinuous left inverse on its range, from which it follows that u is

measurable.

Before stating an explicit criterion for complete controllability of

a system of the form (2-1) one may ask: What should one expect the

definition to yield? This can presently be answered as follbvs. Since

the definition should extend that given for a linear system of the form

(1-2) which is a special case of (2-1), one expects:

a)

If g(t, x) = A(t)x, H(t, x)= H(t), then the criterion which
defines complete controllablllty at t for (II.1) should be
equivalent with the conditlonf [] (t , t)H(t)H (v) Q (t , t)dt

o
non-singular for some tl > to’ as given in corollary I.1.

There should be a geometric interpretation of the condition,
€e8sy what points are attainable from the initial point in finite
time? In the linear system there were global attainability
results, i.e., any point could be attained from the initial

point via a trajectory of the system. In the nonlinear problem,

one would expect at most local results of this nature,
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The approach will be to state a criterion for complete control-
lability of (2-1) which we will show satisfies a). We then use this
criterion to try to establish a geometiric interpretation as mentioned
in b). Of course, how the definition of complete controllability should
be extended is somewhat a matter of personal opinion.

Definition II.2 The system (2-1) is completely controllable at

(%, x) €M if the associated pfaffian system (2-2) is not integrable at
(%, x).

It will next be shown that this criterion is equivalent to the con-
dition given in corollary I.l1 for the special case of the linear system
(1-2). 1In this case it suffices to taeke B = B(t) in forming the pfaffian
system equivalent to (2-3). Also, in taking the linear combination of the
rows of B to form the single pfaffian as in (2-4), we can consider the
scalar functions o(l/ as function 61‘ only t. Indeed we must only show

that if the pfaffian form

(2-6)  b(t)ax - b(t) A(t)x dt

has an integrating factor, then this integrating factor, denoted by/{ s
can be taken as a function of only t. To obtain this, suppose }Z(t, x)
is such that /Z(t, x) b(t)dx -/T(t, x)b(t)A(t)x dt is an exact

differential. Then 7, bt b= b9= O for all i, j = 1y 25 eeey n, and
x5 i

/{tb +/(b = -/q b A X -/L(b Ao Defme/,((t) =/,((t, 0), noting that for

66




the linear system ) = (to,m) x E® which implies (t, 0)600 for t >t .
It follows that/((t) is also an integrating factor.

Since it is sufficient to consider both/{ and the 0<U as functions of
only t, there is no loss of generality in considering that if the pfaffian

system

(2-7) B(t)dx ~ B(t) A(t)x dt = O

associated with (1-2) is integrable, then (2-6) is an exact differential.
Since x appears linearly, definition II.1 simplifies for such systems,
and is: The pfaffien system (2-7) is integrable at the point t if there

exists a C1 scalar valued function W (t, x) and an € > 0 such that for

some b,

Ve(ts x) = (1), W (t, x) = -b(t) a(t) x

for t<t<t+ €. (Note: Under the assumptions on B and H, \th

and \Vtx exist and are equal).

Define:

t
w(to, ;l) :J( E(to, t)H(t)HT(t) QT(to, t)dt .
t

[a}
Then corollary I.l states that the system (1-2) is completely controllable

at t_ if and only if there exists a t, > t, such that W(to, tl) is non-

1
singular.
Remark 1. If A and H are constant matrices, Kalman [1] shows that this

condition is equivalent to the conditions rank [A, AH,... Anan] = Tle
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Remark 2. While the above condition given for the constant coefficient
case can be directly checked, w(to, tl) depends on knowledge of a
fundamental solution §(t, to) which is not always easily obtainable.
Remark 3. It is easily seen that w(to, tl) is a positive semi-definite
matrix. Thus if U(to,tl) is non-singular, W(to, t) is non-singular for
all t E:tl.

The main purpose of this section will be to show that the condition ‘
II.2 for complete controllability of (1-2) is equivalent to W(to, tl) being
non-singular for some t12> to. This condition has the advantage of not
depending on knowledge of a fundamental solution.

Before stating the main theorem, a simple computation yields,

for t0< t1<t2’
T
Wty ty) = Wit s t) + Bt , t,) Wty v5) 8 (e, t,).

Thus if w(tl, ”t;z) is non-singular (positive definitive) it follows that
w(to, t2) is also non-singular (positive definite). The reverse im-

plication nesd not be tru=s,.

Theorem 11,1 A necessary and sufficient condition that W(t], t2) be non-

singular for ail t, > t, is that the pfaffian (2-7) be not integrable at

) o

For ease in both using and proving this theorem, we list the implications

t

and their contrapositives,

68




I.A Necessary condition: w(tl, tz) non-singular for all t, >t

=—=> pfaffian (2-7) is not integrable at ty.
I.B, Necessary; contrapositives Pfaffian (2-7) integrable at t, ==
W(tl, tz) is singular for some t,> t..

I.C Sufficient conditions Pfaffian (2-7) not integrable at t

1
====§>'W(t1, t2) is non-singular for all t,> t,.

I.D Sufficient; contrapositives w(tl, t2) singular for some t,>>t

1
——3> pfaffian (2-7) is integrable at t.
Proof: (We shall prove I.B and I.D)

Assume the pfaffian (2-7) is integrable at t Then there is

1°
a vector b, which is a linear combination of the rows of B, and an

€ > 0 such that b(t) = -b(t)a(t), for 8 <t<t) +€ . Let

o(t, tl); @(tl, tl) = I, be the fundamental solution of x = A(t) x.
Then the vector b admits the representation b(t) = ¢ Q-l (¢, tl) =

c Q(tl, t) for some constant vector c. Let h(t) be any column of H(t).
Then 0 = b(t)h(t) = ¢ @(tl, t) h(t). Since h was an arbitrary column
of Hy and W is positive semi-definite, we have c W(tl, t) eT = 0 for
<t gtl +€ shoﬁing that there exists a t,>>t, such that w(tl, tz)

is singular.

Assume, next, that W(tl, t2) is singular for some t,> t From

l.
remark 3, it follows that w(tl, t) is singular for all 1< t<tL

This implies there exists a vector c(t2) such that c(tz)W(tl, tz)cT(tz) = 0,
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Since the integrand of the integral defining W(tl, t2) is continuous,
: T T T —
c(t?_) @(tl, t)H(t)H (¢) § (tl, t)c (tz) =0 for t; < t<t,.

It follows that 0= o(t,) §(t,, ©)H(t) = o(t,) §7(t, t,)H(t), thus b

defined by b(t) = c(tz) in(t, tl) is an admissible vector in the sense

that b(t) H(t) = 0, i.e., b lies in the subspace spanned by the rows of B.
Define the scalar valued function q/(t,x) = c(tz) @_l(t, tl)x.

Then \Vx(t, x) = b(t), \Vt(tg x) = =b(t) A(t)x for t; < t <t, showing

2
that the pfaffain (2-7) is integrsble at t,. B

The following illustrates the advantage of a definition of complete
controllability for linear systems which does not depend on knowledge of

a fundamental solution.

It is known_that an n dimensional system which is formed from a

single n® order equation having constant coefficients and the control

as forcing term is completely controllable. We next show that this is

also true for time varying systems of the form

<)1)+ ay (1) =TI el 4w (8) x(8) = u(s).

Specifically we shall show that for any to, the associated pfaffian is
not integrable implying W(t09 tl) is non-singular for all t, >t .
We take the equivalent linear system of the form

¥(t) = A(t) y(t) + h(t) u(t) where

- .
[0 3 0Oceeoso O 0
0 0 1, . .
At) = | o R I : ; n(t) = .
. *. 0 .
0 . 0o " 0
.-ang eaﬂ«—-‘l 9 © o o o g --a,l B 1 i °
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One can choose B(t) as the (n-l)xn matrix

B(t) = 0 1 0 ... 0 0

0 0 O «.. 1 O N
b -

The pfaffian system equivalent to (2-7) is then

(2-8) dx, - x,dt = 0
dx2 = x5 dt = O
dx - X dt =3 00

n-1 n

If (2-8) were to be integrable there must exist scalar valued functions

5(j(t), not all zero, so that the single pfaffian

n-1 n-l
Z o(j(’;) dx, + 0 dx - z o(j(t) x;,.p dt
J=1 J=1

is an exact differential. But this would imply c(j(t) =0y J =1y 2y eeey

(n-1), which shows (Z2-<2) is not integrable for any t.e
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Geometric Interpretation, Local Controllability, and the Singular Problem

By associated a pfaffian system of the form (2-3) with the system (2-1),
it is conspicuous that the siress ie taken away from the functional form of
the elements of the matrix H, and placed only on what the range of H(t, x),
considered as an operator on Er, iss This obviously should be the case

when controls are required to be only 5(; functions.

In [9], Markus and Lee consider a system of the form x = f(x, u),
fe Cl in E® x Q s where g)a compact set contained in ET with O in its
interior, is the range set of the control. Assuming £(0, 0) = O and
letting A = fx(O, 0), H = fu(O, 0), it is shown that if the linear system
x = Ax + Hu is completely controllable, then the set of points from which
the origin can be reached in finite time by trajectories of X = f(x, u),
is an open connected set containing the origin. Kalman [10] pointed out
that a similar result can be obtained for a system of the form x = £(t, x,u)
by assuming the linear approximation is completely controllable in terms of
the criterion given in covollary lol.

The system
(2-9) x(8) = £ (s x{t), u(t)) , x(t,) = x,

. . 2 . ;
where x is an n vecior, f is a C~ vector valued function and u is a r vector

valued measurable control, is said to be lecally controllable along a

v
solution 90 corresponding to control v if for some t1:> to all points in
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some state space (n dimensional) neighborhood of QQVF(tl) are attainable in
time %, by trajectories of (2-9) with admissible control.

It would be somewhat falacious to say that a time dependent system
is locally controllable, say at the origin, if all points in a neighborhood
of the origin in state space are attainable by trajectories of the system

in finite time. To see this, we consider the following example of G. Haynmes.

Example 1:
J.(l ==X, + (cos t) u . x(0) = O, Iu(t)' <1
x, = x1+(81nt)u.,

An integral of the motion is seen to be x, sin t - x, cos t = 0, which one

can picture as a rotating (with time) line in X1» X, space. As t varies

2
from O to 27T, all points of E2 are swept out by this line. Now multiply

the first equation by cost , the second by sin t and one obtains by adding;

-a%;- (xl cos T + X, sin t) = u or

t
X, cos t + x. sin t = f u(T) daT . Combining this with the

1 2 0

integral of the motion gives

t [4

xlz(t) + x22(t) = j w(T) aT implying that as time increases, the
-0

two dimensional neightorhoods of the origin of E2 which are attainable

also increase.
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Since all solutions lie on a surface in (t, x) space, one would .,
hardly feel that the system should be termed locally controllable and is
not locally controllable by the definition given above.
We next proceed with an analysis, similar to that used in the papers
[9] and [10], to examine local controllability about a given trajectory of
the system (2-1). Le% x(to) = O be initial data for this system v an
arbitrary af; control and l]ov the corresponding solution. Let u(t; §), ‘
§€ EY, be a family of controls such that u(t; 0) = v(t), us exists, and
denote x( . ,§) as the response to u( . 9§)' Then x( . ,§) satisfies

x(t;@ﬁft

t

[g(‘r, x(T5€)) +H(T,x(T;§))u(T;§)] aT. :

ft
x =] 75 > (T)) + Ty v ] x ’
g o, [T ) (T gUTT) | 2 (T, 0

+ H(Ts (PV(T)) u§ (T’ O)dT

r

. i
where Hxv is an nxn matrix with i j® element z Hx v v .
Y=1 9

For each t 2 'to, we view x(t; §) as a mapping §——-= x with

0 (Pv(t). Let Z(t; (Pv, u s ) denote the Jacobian matrix x§ (z3 0). ’
We have: If for some ?, u§ , Z(ts va, u 2 is non-gingular, the attainable .
T

set at t contains a neighborhcod of the point PV(t). Let P(t, to) be a

fundamental solution matrix of the system
. v : v -
x(t) - [gx(t,('p (1)) + B (5 F(v(8) ] x(t)e then

Th




t
Z(ti (.va u§‘)§‘ft b(ty T) H(T’(,D'(T))ug (T; 0) dT‘ o

From lemma I.1 and corollary I.1l we have
Theorem 1I.2 (Kalman) A necessary and sufficient condition that there
exist an rxn matrix u§ such that Z(tlg ‘.Pv, u§) is non-singular for

some tl> to is that the linear system

76) = (g (8 07 (80) + E (4,0 (0))v(8)] 3(2) + H(x, PF(£)Du(t)
is completely controllable.

In terms of the pfaffian approach the equivalent theorem is

Theorem II,3 A necessary and sufficient condition that there exist an

>t ,

rxn matrix u§ such that Z(tl, (Pv, us ) is non-singular for some tl

is that the pfaffian system B(t,(Pv(t))d.x - B(t, (Fv(t))
[gx(t, (Fv(t)) + Hx(t, LPv(t) )v(t)] x dt = O be non-integrable, for some

t)> %, i.e., that

(2-20) (s, (PT())ax - (1, KP7(2)) [6,(+, F()) + B (5, F(0)) v(8))] x at

is not and exact differential for any b which is a linear combination of
the rows of B,
The same method, when applied to a system of the form (2=-9) yields

Theorem II,32' A sufficient condition that there exists a tlz to such that

all points in some state space neighborhood of (Pv(tz) for all t,> t, are

2 1
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attainable in time t2 by trajectories of (2-9) with admissible controls,

is that there exists a %, > to such that the pfaffian system

1
B(ty v)dy - B(ts v) £,(t, ' (t); v(£))y dt = 0 -

is not integrable at t.. [The notation B(t; v) is used to denote the
dependence of B on the reference trajectory, specifically
v — |
B(t3 v) £,(t, (1), v(t))= 0] o
It is interesting at this point to see the implications of the ‘
assumption that (2-10) is an exact differential., This implies and is

implied by

(2-11) g5 o(t, P(eN)= (e, 07(5)) [t " (1) - H (5T (0]

which can be recognized as the so-called adjoint system of the maximum
principle [11] approach tc the time optimal problem for system (2-1), -
It should be noted that if b(t, &/p"(t)) satisfies (2-11), then it is an
adjoint vector which is orthogonal to all of the columns of H. Since the
maximum principle (for control components bounded by one in absolute value)
impliess choose uj{t) - Sgn :31 bi(t,ﬁfy(t))Hij(tg(Pv(t))g in this case
I

it yields no information,.

I shall designate such a problem as one which admits a totally

+

singuiar arc q5v9 lo€oy, where the maximum principle yields no information
in the time optimal problem, for any components of the optimal control,

The arc would be singular, bat not totally singular; if there is an adjoint
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veotor orthogonal to some, but not all columns of H.

Theorem II.4 The pfaffian form (2-10) is an exact differential if and

only if QDV is a totally singular arc.

Proofs It has been shown above that if (2-10) is an exact differential,
then the vector b satisfies (2-11), which implies 95v is a totally singular
arce

If qov is a totally singular arc, there exists a vector p(t) such

that i) p(t) H(t’TD (t)) = 0 and i) p(t) = -p(t)

[gx(t,ﬁbv(t)) + Hx(t,QQv(t)) v(t)] . From i) we zonclude that'p(t) is
a linear combination of the rows of B(t,tfr(t)), while II) implies that
this linear combination, (2-10), is an exact differential.[|}

To summarize;({)v not a ﬁotally singular arc implies the pfaffian
form (2-10) is not an exact differential which implies there exist
t:> t and u£~ such that Z(t f? ,11§) is non-singular and the attainable
set at time t contains a neighborhood of the point 97 (t) The contra-
positive of this statement provides an interesting characterization of
totally singular arcs, I.e., if for every t1:>'t0 there exist points in
every state space neighborhood of (Pv(t]) which are not attainable in time
tl with 3{? sontrclsy the arc (P is totally singular. On the other hand,
as will be shown by example; a totally singular arc can remain on the

boundary of the attainable set,; and thus provide a time optimal trajectory.

Theorem 11,5 If the system (2~1) is not completely controllable at to’

Z(t,yD u g} singular for all t2>t o u§- and all reference trajec-

tories Qg g ie€oy every trajectory %) is totally singular,
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Proof: Any vector b, which is a linear combination of the rows of ‘e

B, satisfies b(t, x)H(t, x)=0., Thus for any vector v(t),

& [, 0ncs, Ov(1)] = 0, or v(s) E¥(t, x)b_(t, x) = ;

-b(t, x)Hi(t, x)v(t). Evaluating this identity at the point (t,(Fy(t)),

substituting into (2-11) and expanding of the left side yields

(2-12) bt(t,lpv(t))+b(‘tv(Pv(t))sx(t»(Pv(t))+8(ts(Pv(t))be(ts(Pv(t))E ®

(E (5, 7(4)) [b (6,7 (8) - 3 T(e,007(e)) ]
This identity provides a necessary and sufficient condition that (2-10)
be an exact differential, i.,e., that spv be tota:11y singular.
Now assume the system (2-1) is not completely controllable. This
means that for some by, a linear combination of the rows of B, the pffafian

form b(t, x)dx ~b(t, x)g(t, x)dt is an exact differential, or

b, (t, )z-b(t, x) g (5, x) ~&(t, x) b " (t, x)

T -
bx(t,y)s_ b (t, x)=0,

Evaluating these two iden:ities at (4%, (Pv(t)) for an arbitrary control v
shows that (2-i2) is satisfied, hence every trajectory LPV is totally
singular,
A conjecture which one might be tempted to make is that if the '
system (2-1) is completely controllable, it admits no totally singular

arcs. This is pot true; as the following example from [2] shows,.
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Example II.1

I
=

x, =%, -x, ¥, u xl(O)—

0.

X, ==X, +1 12(0)

For the time optimal problem of reaching the point (2, 0), it is shown
in [2] that u = 0 is the optimal control, if the restriction lu(t)l <1
is imposed, and it easily follows that this is also optimal in the class
of o\é controls,

For this problem, one can use for the matrix B, the single vector

b = (1, 112 xz). The associated pffafian equation is

2 2 2
dx, + %% x, dx, ¢ ¥ (x_2=-l)dtzo.

i 1
Let x = (x,, x.), a(x) = (1, x 2x., x 2(x 2_ 1)) Then (curl a(x))
10 Fpdr SVE/ T AT By Ty M A TS *
a(x) = 2 x, tlégé 0, thus the pfaffian is not integrable.

The optimal path from *he point (1, 0) to (&, 0), > 1, is ob-

tained with zontrcl o =& Oy and is

This is a totally singular arcze. To show this,

we note b(cg(ﬁwggt)) = (1, 0).

bt () )ix (ks 2(1) (8,05, (P(0)) + B (4,40°(1) » 0] x as

ex

= n PR g
= (hrl + dxz s St
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-2 xl

1=t

2x1

1 1-t

singular arc. Here the ar: ()00 is on the boundar~y of the attainable set,

Let a(x, t) = (1, 0, ). ‘Then (curl a). & = O which implies the

A S

pfaffian dx, + 0 dx, - dt - O is integrable, and (P” is a totally

It should be strezsed at this point that it has not been shown that
if for scme control v, the matrix Z(t, LFV,, u§) is zingular for all t .>;to,
and ug then suffisiently small n neighborhoods of a point ('ﬁv(t) cori=
tain points not attainable in time %, from initial data O given at to. .
In fact it will next be shown {Example II.7) that this is not the case. To
do this we must produce a time optimal problem which posseces = totally
singular arc which yields neither a maximum or minimum. Since the arc is
totally singular, Theorem ZT.%t shows that one cannct concluds that the
system is locally controllable along this arc by considering the linearized
equations as in Theqrem 11,2, However the use of theorem II.3' on certain
arcs which differ from the singular arc but have some points in common with

it, will establigh the local controllability.

jav]
S
b
°
W
°
o

We consider control systems of the form studied in [

(2=13) il(t) = Ayx{t)) ¢ Bo{v(8)) ui ) x{0) = x,

) - A () ¢ B (x{1)) m{o) HOIESY

We assumz that in =zome vegion of interest ﬂ(O(xf statle spane, .

(2-18)  Blx)= =8 (0 (x) 0 (x) Ax) £ 0

and that A,y F., i - I, ~ are Cl in /Q. ’

Z
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The pfaffian system associated with (2-13) is the single pfaffian

equation
(2-15) Bz(x) dx, - Bl(x) ix, + A(x) dt = O,

Since O(x) £ 0 and multiplication by a facter does not change inte-

grability, this can te rewzitten as

B,(x) B,(x)
(2-16) AGT 4 ~»7§(;7 dx, + dt = O,
By(x)  B(x)

Let 2(x) = INCORRENOE 1) 5 then a necessary and sufficient
\ 4

condition that the pfaffian (2-16) be integrable at a point (t, x) is

that Z(x) ¢ curl Z(x}) = C ir a neighborhood of x. Computing yields

_ BE(X) S BQ(X) _
Z(X) o curl Z(X)= = ‘;)a:‘(; A(X)> + axé A(X) = - CL)\)()9

where W(x) (using ire rota :-n of [2]) can be directly computed from

/

. . e pe . SN
the right sidcs of t2e diffcrontial equations 2-13).

Let v e a ~ortinaoms cintrol (this is suificient continuity when
. . . - e v
the contrnl apprars iinearly) satisfying |v(t)| <C1, and let (» bve the
covresponding trajeztery of (2-13%).

i

VN L .
Theorem 1I, If for some t, 2 t , e (z,) i not a zero of ¢, then

[}

for any t2;> t, all points in scme state space neighborhoed of ?5v(tq)
e <
are attainable by trajectories ¢f (2-12), in time t,_, with admissible

controlise.
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Proof: The variational equation for the system (2-13) about the

AW

trajectory (av is given by

° \'4 s v
5(6) = [A@7(8)) + w(£) B ()] (6] + B(PY(8)) u(t) ~
Ay B,
where A = ) , B = . The pfaffian equivalent to (2-10)
A B
2 2
for this variational equation is ‘

(2-17) B, (+))ay;- B, (0 (+))ay, + (B,(p"(+)),3,(p7 () [ (p"(1))

v(£) B((p"(+))] ¥ at - 0.

A sufficient condition that (2-17) be not integrable at t, is that

(2-18) 3‘%(Bz(tpv(t))sBl(va(t)))'t t,é<-132(t.o"(t1)>,Blup"(tl)))[Ax(goV(t1>>+ :
ke

v(tl) Bx(lfv(t]))] s which is implied

byw(l'ov(t)) +# O as can be shown by a straightforward calculation.
[In terms of Thecrem ITo%, (:-18) statss that (]Dv(tl) is pot a point of a

singular arc. In [‘.ﬂ‘, P&o 97] it is shown that for systems of this type

singular arcs are charasterized by the fact that (Dis zero along them. ‘
It follows that if (Fv(tl) is not a zero of (W, then it is nct a point of .

a singular arc, hence (2~;7) is not integrable and the conclusion of the

theorem follows.]
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.s It should be stressed that the integrability of (2-16) requires
W (x) = 2(x) * curl Z(x) to be zero in a neighborhood of a point, while
| Theorem 1I.6 deals only with the value of W at a point. It is possible,
Example II.1, to have the pfaffian (2-16) not integrable at a point (t, x)
at which wW(X) = 0, and yet have a trajectory qov such that Lff(i) =x
and the .system is not locally controllable about 99v.
. We next give the example of a problem which is locally controllable

along a totally singular arec,

Example 11,2 (A singular ars %)O(t) such that all points in a neighborhood
of (P°(t1) are attainable in time t,,)
Consider the system

X, =u u(t)] <1
. |u(+)]

2
. x,=1+x,x%u x{(0) =0

Then A(x) = 1, wi(x) = szg hence if we were to consider the time

optimal problem of reaching the final point xf(O9 %), the Greens theorem
approach [2], yields the fcllowing

*2

iapl (C,%)

Figure 1
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the optimal arc being shown by the arrows. There is an arc along whioch
W= 0, i.e., x, = 0, and while this can be attained with the control
u =0 it yields neither a maximum or minimum to the time optimal problem.

This arc we designate as (Po;

il
(@]

(fo(t) AP
| $,° (¢)

1
&

It is easily checked that the variational equation along /790 is not
completely controllable,

Now consider a relation xl = k1 sin k2 1

It will be shown that for kl sufficiently small, there exists a unique

admissible continuous control Ti(t) with trajectory (Pu which has

Xps Kpy k, >0 with k2>‘}7T.

{(xl, x2)s x, =k, sin k, x,, xZZO} as its track.

From the- Greens theorem approach [2 ] and the symmetry of (J(x) about

the line X, = O, the parametrization of (Pu must be such that the even

numbered crossings of the x_, axis, counting only crossings which occur for

2

x, > 0, one must have

%E(QET})“OE%O(&%“)

u n n ) nTT
AN e e b}

21T < 1/3, 1t will
ks

be shown that there is local controllability along (Pu, and since

We will be interested in the case n = 1, so that
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= LPO ( %ZI’ ), it will follow that a neighborhood of
2

( -—TL ) is attainable in time 2 o
LP k2 k
, 2
First we will show that for k, sufficiently small, there is a

1

unique continuous u which leads to a trajectory (Pu having

.

{(xl, 12)8 X, = kl in k2 X,9 X, > O} as its track. Differentiaiion

‘ of the track relation with respect to %t yields

1 k [cos k, xz(t)] ;2(1;).

x(t)_k

Substitution from the system equations leaves

(2-19) u(t) - k,k, [cos K x,)(t)] [1 + xg(t)xlz(t)u(t)] R

For any control u,
t

(
ry(8) =) w7t
t M s

o) < ow | [ A7) ¢ [ s mor e ] /,

0

T T ’
exp =-j 2{3™) j uv(x)dx db/ aT .

0 3

Substituting these in (2-19) v’ 21ds an expression of *the form
u(t) = kyF i)

where the definition of the nonlinear operator gfis obvioure. Let
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C [0, %] denote the space of continuous vector valued functiontu on the

interval [0,)6] , with the supremum norm, and 3% the closed ball of radius

% in this space, It is easily shown that for kl sufficiently small but

positive, u € B}é@klafu € B}é, and klxis a contracting map. Thus

klghas a unique fixed point in Byé, call this point W. Then (PE is not

a singular trajectory, since k, positive implies u(t) #0, and 99“ has the

desired track. .

Now for O'<:t1<i‘%§ ’ QJE(tl) is not a point of the singular arc,
hence not a zero of (Y. From Theorem II.6 it follows that all points in
some neighborhood of q&a(tz), for any t2:> tl are attainable in time t2 by

el ~

trajectories with admissible controls; hence this is true for t2 k2

To determine local controllability along qﬁu by use of the fundamental '
solution of the variational equation about this trajectory would be a
virtually impossible task.

In concluding, it should bte notsd that totally singular arcs were de-
fined with no mention made of transversality conditions. It is possible to
use these conditicng, in very special cases, to rule out the existence of
singalar arcz in the cplimal sirategy. Alsoy for a time optimal problem

for a system ¢t the form

(2-20)  x(t) - g(x(t)) + H(x(t))u(t) ‘

the maximm principle yields the fact that the Hamiltonian is constant

along the optimal path. We shall show that this cannot be used to rule
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out totally singular arcs, since such arcs automatically satisfy the con-
dition even though the Hamiltonian is seemingly a function of time along
them.

For the system (2-20) with any given control u(t) we define the

Hamiltonian for the time optimal problem as

H(t, x, p)=p . &(x) + p « B(x) u(t) + L.

A necessary condition is that }lis a constant along the optimal tra-
jectory, it need not be s0 on a non-sptimal trajectory. Define the ad-

joint system as

(2-21)  p(t) = -p(t) g (x,(¢)) -p(t) B (x(¥))u(t)

Theorem II.7 The Hamiltonian for the system (2-20) is constant along

any totally singular arc.

Proof: We defined a totally singular arc as an arc Qau which

gsatisfies (2-20) for which there exists and adjoint vector p(t) satisfying

(2-21) such that p(t)H(?Ou(t))EEO for a set of t values having positive

measure. Then

(2-22) E%H(t, (!9“(_t)s;p(t))E f{ [p(t) - g(lp™(1)) + 1] = i’igi + Pigi ¢

vV

From (2-20) gis ‘Piu -y

From (2-21) p1 g; = - L - p, H U, o Substituting in (2-22)

V
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£ B (4 %) ,0(8)) = iai[géi“ - ut uk] + [-by- p H* uk]‘?ﬂy“

s iG] s {3 [roue )] | u -

from the condition p(t)H( sou(t)) = 0. |§
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II1. THE EQUIVALENCE AND APPROXIMATION OF CONTROL PROBLEMS

e

INTRODUCTION TO SECTION III

In this section we will be concerned with the time optimal feed-

back control problem for an n vector system of the form

(3-1) ;c(t) = £(t, x(t), u(t)) ’ <;‘ = dgit))

where the control u is an r vector valued function with values in a
given set U. The major interest will be in feedback controls.

One of the difficulties in the theory of optimal feedback control is
the discontinuity of the control with respect to the state variables,
which the necessary condition termed the maximum principle;, so often
shows to be the case. Letting H(t, x, p, u) = po £(t, x;, u) - 1;

u*(t, x, p) be so that H(t, x, p, u*(t, x, p)) = H(t, x, p, u) for -
all u € U, and H*(t, x, p) = H(t, x, p, u*(t, x, p)), the Hamilton-

Jacobi equation approach [1] often leads to a partial differential

equation with discontinuous coefficients, while the Hamiltonian equations

of motion which describe the system (the characteristic equations of the

Hamilton-Jacobi equation) are of the form

(3-2)  x = -a-ép— A (t, x, p) . p= - %H-(t, X, p)e ()

The maximum principle of Pontriagin, for time optimal problems, assures
ws that if u*(t) is an optimal control, x*(t) the corresponding optimal
trajectory, then there exists an absolutely continuous n vector p*(t),

~ not identically zero, such that H*(t,x*(t),p*(t)) = H(t,x*(t),p*(t),u*(t))

while x* and p* satisfy equations (3-2). The usual use of the maximum
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principle proceeds, however, by attempting to generate candidates for an
optimal trajectory by solving a two point boundary value problem for the
system (3-2). Since u* may be discontinuous, the fundamental questions
of existence and uniqueness of solutions to these equations cannot easily
be answered.

An alternative would be to restrict the controls to be continuous,
or even Cl, (continuously differentiable) functions and attempt to gen-
erate within this class a sequence of controls which will in some sense
tend toward the optimal control. In doing this, however, one must
seemingly discard the maximum principle which is one of the most useful
tools for generating optimal controls, for it so often demands dis-
continuous controls.

The approach taken here is not to forcefully restrict the class of
approximating controls, but instead to generate a class of approximating
problems whose solutions will be continuous or C1 controls and will tend,
in a given sense, to the solution of the original problem.

For the system (3-1) let R(t, x) = {f(t, X, w): ueU} . We shall
say that the time optimal problem for a system ; = g(t, x, v), v €Vis
equivalent to that for the system (3-1) if {g(t.x,v):v € V} = R(t, x) for
all (t,x) in some domain of interest. For given € > O we define the time
optimal problem for the system ; = he (t, x, v), v € V(€) to be an

€ -approximate equivalent problem to the time optimal problem for (3-1)

if d ({he (t,x,v):ve\{(e)} , R(t, x))< € for all (t,x) in the domain
of interest. Here d(Q,R) is the Hausdorff metric distance for sets in
E°.

Intuitively equivalent problems have the same optimal trajectories (as

will be shown) while the optimal trajectories of € - approximate equivalent
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problems will be close (uniformly) to those of the original problem.
It will be shown that under appropriate conditions (essentially the .
Fillipov existence conditions [2] ) the approximating problems can be
chosen in such a way that the corresponding feedback controles are con-
tinuous, or even of class Clc In certain cases this allows the Hamilton-
Jacobi theory, as derived in [1] s, to be utilized for the construction
of fields of optimal trajectories and optimal feedback controls.
Although we deal only with the time optimal problem, it should be .

noted that for a problem of the form x'(T ) = £f(T, x(T), uw(T)), with

Tf
the functional to be minimized beingf o{(6, x(67), u(6))do where
7, .
the scalar valued function of satisfies ol (6, x, u) = & >0, the change ”

of independent variable

T
t(T) = l ol(g0, x(o), u(er))do reduces the problem to an

o

equivalent time optimal problem for the system

-1
y(t) = [ &(T(t)gy(t)gu(t))] (T (L) ,y(t),ult)) = glt,y(t),ult)).

THE MAXIMIZATION OF p.r WITH r IN A STRICTLY CONVEX SET

Our motivation is to choose approximating problems for which the
maximum principle will yield smooth controls. Let r*(p) be the function
which maximizes the functional F(p,r) =z p.r for fixed p € E*- iO} ,

r € R a given compact set in E'. We begin by examining conditions on
the set R which will insure that r* is smooth since it is a maximization

of this type which causes discontinuities in the control.
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Definition. If § is a set contained in E (Euclidean n space) a support
hyperplane is a hyperplane M which lies on one side of S and SN M # p '

the empty set.

Definition. A convex set R contained in E® will be said to be strictly
convex if it contains more than one point, and every support hyperplane

has at most one point in common with R.
If R is a compact set in E® we denote its boundary by OR.

Lemma III.l. If R is a strictly convex set in En, then R has internal

(interior) points. (This result depends on finite dimensionality);

Proof Let T r1.€.R, r # s and V., be the linear variety of

1

dimension one determined by these points. Let Ml be any hyperplane con-

taining Vlo ~Since Ml contains two points of R it is not a support plane

and there exists a point r, €E R, r, &€ Mlo Let V, be the linear variety

2 2 2

V. has dimension two. Let M2 be a hyper-

& M2. We con-

determined by ros Ty and sy Vs

plane containing Vao Again there is a point r3 € R, r3

tinue inductively getting at the (n-1)st step a linear variety vn—l of
dimension (n-1) determined by the points Taoe o o 5 T g0 Then there

exists a unique hyperplane Hn- containing Vn_lg and again a point

1

rn€ R, r € M Since R is convex it contains the convex hull

n n-1°

of the set of points ro9 o o o 4 rn; and since the vectors rl =Ty

Ty = Tys o o o s r, - r,are linearly independent, they determine an

n cell which has non void interioro.
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Lemma III.2. Let R be a strictly convex, compact set in E'. Then for any

fixed p € E® - [o} , the function F(p, ¢ ) attains its maximum value at

a unique point r*(p) = r € OR.

Proof For any fixed p, F(p, *) is a continuous function on the compact
set R and hence attains its maximum there. Suppose the maximum is attained
at an interior point r, € R, Let N(ro) be a neighborhood of T, contained
in Re Then p * r, is an interior point of the real interval p. N(ro) =
1])0 r: r € N(ro)} , contradicting the fact that F attains its maximum at
re

To show uniqueness, assume Fﬁp$ ® ) attains its maximum at T while
ry £ r belongs to R and F(p, rl) = F(p, ro)o Define
r(ol) = o(r  + (1 - a0 r, - o < ol <=oo . It follows that
F(p, r(ol)) = F(p, ro) for every such point r(o{). If for some ol ,

r(o{) is an interior point of R, the argument of the previous paragraph
would show a contradiction to F(p, * ) attaining its maximum at r . Thus
the one dimensional linear variety V = {o(ro + (l—oL)rlz - 00 = 0L< oo}
does not intersect the interior of R, which is not empty by Lemma III.1.
By theorem 3.6-E [3] there exists a closed hyperplane M containing V such
that the interior of R lies strictly on one side of M. It follows that M
is a support plane for R, and since M contains more than one point of R,

this is a contradiction to the strict convexityol

Theorem III.1 Let R be a strictly convex; compact set in E'. Then the

function r*(p) (shown to be well defined in lemma III-2) is continuous.

Proof Suppose pn ———+% p. Since R is compact, some subsequence
of the sequence {r‘(pn)} converges to a point of R, and there is no

loss of generality in assuming it is the original sequence, i.e.

oL




-

let r‘(pn)————-+ r,. We suppose r*(p) = r, Z r, and seek a contradiction.

From the definition of r*, F(p, ra) = F(p, rl); let
F(p, r,) - F(p, r)) = % =0.

Since F is continuous there exists an N = 0 such that

|F(pn, r2) - F(p, r21< 8/1* and |F(p, rl) F(pn, r‘(pn)l< S\/‘+

for n = N. Then F(pn, ra) - F(pn, r‘(pn))

F(p, r.,) - F(p, r.)
2 1

s/2 for

+ [F(pn, r2) - F(p, r2)] + [F(p, rl) - F(pn, r‘(pn))]>
n =N, a contradiction to the definition of r*(pn)..

We next examine when the function r*(p) is Clo

n ¥
Definition. For y € EY, |y| = iz yi2 § .
1

Lemma III.3. Let R be a strictly convex, compact set in E" which has a

unique outward unit normal n(r) at each point r€ dR. Then for fixed

p € E® - S\O} , F(p, *) achieves its maximum at the unique point

Y =
r, < OR such that n(rO; = p/Ipl .

Proof Assume without loss of generality that zero is an interior
point of R,
For x € E°, let I(x) = {a: a =0, alx € R} and define

(o(x) = inf. a. ; (o(x) is called the support function of R, or also the
a €I(x)

Minkowski functional. We note that if r, € OR and y is any vector, then

for a real scalar o_= O, oy + To € 3R

9(0Ly+ro)

and for of sufficiently small, is in a neighborhood of e
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From lemma III.2, we know F(p, *) achieves its maximum at a unique

point on OR, let r be the point. Let g(y, ro) = lim %L fdy* To

ol —0 Le (ol.y+r°) "o j .

Since OR has a unique outward normal at each point, gly, ro) = —g(—y,ro).
Since psr = p r for all ré OR in a neighborhood of r_, it follows
that p . g(y, ro) < O for all y. Assuming there exists y such that

pe+gly, r)) < O implies p - g(-y, ro) >0, a contradiction. Thus

pe gy, ro) = 0 for all y, or a necessary condition that r, presents

F(p, * ) a maximum is that p be orthogonal to the support hyperplane at T
Since R is strictly convex it is easily shown that there are exactly

two points which satisfy this necessary condition, one with outward

normal p/|pl giving F a maximum, the other with normal -p/|p| which

gives F a minimumol

Definition. We say that a strictly convex, compact set R in E" has a

smooth boundary if there exists a unique outward unit normal n(r) € C:L

defined on OR. (Actually we consider n as a restriction of a C1

function in a neighborhood of r € R, see, for example, [‘-}] pg. 27)

Theorem III.2. If R is a compact set in E" with smooth boundary having

positive Gaussian curvature at all points, then r*(p) € Clo

Proof Since it is assumed that the unit normal to OR is of class Cl,
the Gaussian curvature is a continuous positive function on OR. But OR
is compact, thus the Gaussian curvature is bounded away from zero. From
theorem 5.5 [5 s P& 35] it is easily followed that R is strictly convex.

From lemma III.3, we have thar r*(p) satisfies n(r*(p)) = p/|pl. Let

r, = r*(po) be an arbitrary point on OR.
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The method will be to utilize the implicit function theorem on a
relation of the form g(r, p) = n(r) - p/ipl .

Let Cl, o o o 4 Cn_l be a local coordinate system for a neighborhood
of r_ on 3R. Then the inclusion map from d R— = E" determines n
smpoth functions xl( Cl, e e o s kn-l), . o ey xn( Cl, .« o ey Cn-l)
or briefly x( C ). Assume x(0) = r, and let Vl,be a measurable neighborhood
of zero in the local coordinate system.

Let Sn—l be the unit (n-1) sphere; we consider n(® ): dR—— Sn-l.
Define 8(¢) : V; —= s by n(x (€)) = 6(§). Thus
ne ¢t ==>occl.

Let }0= Ap) =p/lpl , P E E - {0}; then ;ﬂe Cl. Our approach
will be to utilize the implicit function theorem on the relation
(€, P) =0(f) -F.

We note that G € C', and if {ﬂo = ¢(po) then G(O, gﬂo) = 0. Also
Ge (0, £ = o (0). It must be shown that det(GC (0)) # o.

From differential geometry we recall that as C varies in Vl, x( C)

traces out a region V_ on OR while the normal 6( é) traces out a region

2

V., on the surface of the unit sphere. Let K($ ) denote the Gaussian curvature

3 -
of OR at x(§). and A, the "area" of V_. Then

3 3
Ay = f K(€)da§ . But f det (9—5(5—) > af = A;. Since V, is
v v

1 1
. 1, .. de(d) \
arbitrary (but measurable) and 6 € C*, this implies det —S-E-— = K( §).

By assumption K is positive at all points of OR, hence

det(Gf (0)) # O. The implicit function theorem now gives the existence
1 R
of a C* function §($) such that G(  ( ¥2), ¥) = 0.
Then r*(p) = x( £ (P e ¢\
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The following is an example of a strictly convex set R with smooth
boundary and a point at which the Gaussian curvature K is zero, for which
r*(p) is not Cl.

EZ . b

Let part of the boundary of RC consist of the curve y = x , the
rest so as to make R strictly convex and with smooth boundary. We restrict
our attention to the defined part of the boundary, in particular to the
point (O, 0) at which K is zero.

3

The outward normal is given by (4 x”, -1). Let p -.-.(pl, pa) have p, .
negative and p, near zero. To coﬁpute r*(p) = (x*(p), y*(p)) we compute

the point on the curve y = xu where the normal has direction numbers

- & - L/3
(—pl/pz, -1). This gives x*(p) = ("P1/4 p,) , y*(p) = ( Pl/hpa) ,

2 x*(p) | . ’
and _rpla_ is seen to not be continuous at Py = 0.
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APPROXIMATION OF OPTIMAL TRAJECTORIES

The Time Optimal Problem

Consider the system (3-1), with U a compact set, and initial data
x(to) =x_ . Let S bea smooth (CZ) manifold in the (n+l) dimensional
(t,x) space with the property that for any t,, t3, {(t.x)es: t,=t= t3}
is compact in En+1. The problem is to find a measurable function u = u(t)
having values in U, such that the solution of the initial value problem
for (3-1) with u = u(t), intersects the target S in minimum time; i.e.,
is an optimal trajectory.

We next give the conditions of Fillipov [2] , which insure the
existence of an optimal (open loop) control, and optimal trajectory for

the time optimal problem.

Existence Conditions

(3-3) f(t,x,u) is continuous in all variables t,x and u, and is
continuously differentiable with respect to x.

(3-4) x- f(t,x,u) = c( |x|2+ 1) for all t, x, u.

(3-5) R(t,x) = {f(t,x,u):u € U} is convex for every t,x.

(3-6) There exists at least one measurable function u(t) with values
in U, such that the corresponding solution of the initial value,

problem for (3-1) attains the target S for some t, =t .

Equivalence of Problems

Let the same time optimal problem, as posed for (3-1), also be posed

for the system

(3-7) ;(t) = glt,x(t),v(t)), v(t) € V, a compact set,

where g satisfies condition (3-3). Let Q(t,x) = gg(t.x,v):v e,V}
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Theorem III.3 Assume the existence conditions are satisfied for the

time optimal problem for the system (3-1). Let (e ; u*) denote the
optimal trajectory and u* the optimal control. Then if Q(t,x) = R(t,x) -
for all (t,x), @( « ; u*) is an oj)timal trajectory for the time
optimal problem for the system (%-7) and there exists a measurable
function v*(t) with values in V such that & (t; u*) = g(t, @(t;u*),v*(t))
almost everywhere.
Proof f{t, A(t; u*), u*(t)) is a measurable function of t, with
values (almost everywhere) in R(t, &@(t; u*)), therefore in Q(t,s2(t; u*)). ‘
From lemma 1 of Fillipow [2] s there exists a measurable function v*(t)
with values in V such that f(tg')Z’(t,;u*)gu'(t))zg(tgfo(t;u‘),v"(t)) almost
everywhere. It follows that é(t; u*) = g(t, Z(t;u*), v*(t)) almost
everywhere.
Now if %A ¢ ; u*) were not an optimal trajectory for (3-7), i.e.,
¥( e v) provides a better time, the same argument shows that ¢A + ; v)
is a solution of (3-1) for some measurable control u with values in U,
thereby contradicting the assumed optimality of ¢X - ; u*). |}
This theorem stresses the fact that in seeking optimal trajectories,
it is the set function R{t,x) which is of major importance, not the

function f{t,x,u) or the control set U.

When the conditions of theorem IIf.3 are satisfied we define the time

optimal problem for the system (3-7) to be equivalent to that for (3-1). .

If the existence conditions are satisfied for the time optimal problem, “.
from conditions (3-4) and (3-6) we can obtair a compact region of (t,x)
space to which analysis can be restricted. Indeed for t°_<_ t= tl .
condition (3-4) implies any solution x(t) of (3-1) satisfies

|x(t)|2 = (‘xo| 2 + 1) exp (2C Itlmtol ). Here |x(t)| stands for the usual

Euclidean norm. Henceforth, we denote by A tne compact region of (t,x)
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. 2 2 .
space defined by t =1t =<2 tl s |X|T= (|x°| + 1l)exp (2C |2t1-t°| ).

Definition. The Hausdorff metric topology for non-empty compact sets in

E® is derived from the following metric: The distance between two non-
empty compact sets X and Y in the smallest real number d = d(X,Y) such
that X lies in the d neighborhood of Y and Y lies in the d neighborhood

of X.

€ Approximate Equivalent Problems

Definition. For given € = 0O the time optimal problem for the system
; = n€ (t,x,v), h€continu-us on ElXEDXV(€)9 is said to be an €
approximate equivalent problem to the time optimal problem for (3-1) if the
set R(t,x, €) = {hc" (tyx,v)s vGV(Q)} = R(ty,x) and
d(R(t,x,€ ), R(t, xS € for all (t,0& I .

Since h€ (t,x, *) is continuous on the compact set V(€), R(t,x,€)

is compact.

Theorem III.4. Assume that the Fillipov conditions (3-3), (3-4) and (3-5)

are satisfied for the time optimal problem with system equations (3-1).
Then for every & = O there exists an € approximate equivalent problem
with system equations ;t = n€ (t,x,v), vEV(E) which satisfies the
following properties.

a) The control set V(€ ) can be taken to be the unit ball of En,
which we denote B".

b) h€ is a ¢ function on & x Bn., while for each (t,x)€ A ’

n€ (t,x,* ) is one-one on B ——» E .

¢) The set R(t,;x,€) = {he (tyx,v): veBni has smooth boundary

having positive Gaussian curvature.
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d) The (single valued) function v*(t,x,p) with values in B which
maximizes H(t,x,p,v; € ) = p - h© (t,x,v) = 1 for each (t,x)€ L .
p € E'- {_O:’9 is C1 in t,x, and p. Actually v*(t,x,p) € B” - Sn-l,

the (n-1) sphere,

The proof will proceed by obtaining a simplicial approximation to oET
in which the diameters of the simplexes are sufficiently small. For
each vertex (t19 Xi) of a simpiex, we approximate the convex set

R(ti’ xi) by a strictly convex set Q(ti9 X., € ) having positive

i ?
c . . [ .
Gaussian curvature, A veator function g (tig X3 ) is then con-
7 . { & ny
structed so that Q{t . x s ¢ ) = ? g (tig X5 v): vEB j , and by use
of g€ , the set function Q is extended continuously to all of JY in
‘ , S

such a marner tha* for each (¢, x'¢ AY ; Q{t,x; € ) has smooth boundary
with positive Gaunsian curvature, The desired function n€ is then ob-
tained by smoo®hing ths fun:tiow g* ir the variables (t,x) via the

Friedricks mollifier techrique.

Proof Rit,x) is contsnuous, “n the Havsdorft metric topology, on the

F 1 . PN L. ¢
compact set x . For sny ¢ * © et &> O pe such that
, - vy L ; L N n+l
d(R(t,x) Rt ' x" )er" /8 whepever ﬁtKQX}k(tong)E‘i %. Let 6’8 be

any bounded geowmetric <impiex which contains J& , and Kg be the geometric
complex consisting of this single simpiex. By barycentric subdivision
Kg can be suhdivided into a geometric compliex Ké consisting of a family

of geometric simpiexss Yy e~ ‘; , each having diameter less than S.
~ P

Each peint (tgx)é.j}’has & unique representation of the form

n+2
(t,x) = Z oi/] (11& x bowith 0« o <1, Zd‘% = 1; where the
isl

(n+2) points (t,, x 1 ar» the vwertices of the geometric simplex from
. o el ) - , ~ .
the family iﬁ'g { o which the poong {t,x) belongs. Without loss of
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generality we can now consider the union of the members of {E’sn+1}
which have all vertices in dO‘ as a new domain of interest; call this
domain again X}-o

Let (ti. xi) be an arbitrary vertex in A~. Then R(ti, xi) is con-
vex. Let 71(R(ti, xi)9 €/4) be a convex €/h neighborhood of

R(t,, xi). From l6 s PEo 38] there exists a strictly convex set

i
Q(ti, X4 € ) containing 7i(R(tig xi), €/4); having an analytic boundary
with positive Gaussian curvature, and such that

aAQUt, x5 € )5 MUR(E , x,), €78 )< &k,

For each (t19 xi)€ A we construct a corresponding set Q(ti, X,, € ) as

above. We next proceed to define a set valued function Q(t,x, € ) on all
of aO' o

It can be assumed without loss of generality that O € R(t,x) for all
(t,x) € 06’ . Indeed if this were not so, one could choose a point
u, € U and construct new sets S(t;x) z g'f\tgx,u) - f(t,xguo): u €.U‘}
-

which satisfy this property.

Let B" be the unit ball in En; Sn@l its' surface and vlw”,vn-1 a

. n-1 < n . -
coordinate system on S while v measures distance from the origin.

n-1 1) strikes

BQ(ti9 X, 5 € ) in a unique point which we denote g (ti,xi,vl,u,o,vn_l,l)°

Then a ray from the crigin through (vl9 vzg o o o ¢ V¥

This defines g€ (tlgxi9 +) on Sngls to extend it to B™ let

1 n)

V=A(vV, o o 0o 5 ¥ B". Define gg’ (ti9 X4 s v) as that point in

Q(ti9 xigél) which lies on the ray through the origin and

1 n-1

(V, « o« o« 3 ¥ 5, 1) and is such that

_ige'(tgxiv)| _ 0

; 1 n-1
!ge (X, V 40007 51
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Then ge (t,, x,, *): B® —=Q(t,, x., €) in a one to one fashion.
i i i

i’
We will define Q(t, x, € ) on all of A by extending the definition

of g€ to all (t,x)e& D .
n+2 .

Assume (t,x)€ A‘ . Let (t,x) = Z o(,i (t_ig xi) be the unique
i=1

representation of (t,x) in terms of the vertices of the geometric

simplex of K’ to which it belongs. Define ‘
€ pn+2

ge(t,xvv) = z o(.,i g€ (tig Xy v), ve B, Then if
i=1

Q(t,x, €) = §g€ (tgxgv):v(-.Bn; it follows that:
\ 7

1) MN(R(t,x), €/8XCQ(t,x,&). Indeed, from the choice of ® ,
MR(tx), €/B)CVUR(L, %), € /4)CQ(ty, x5 €) for all

vertices (tig xi) of the simplex in which (t,x) is contained.

But Q(t,x,€) = Z‘ ©(ﬁ Q(ti” X,y € ). Thus if a point is in

YUR(t, x), &/8) it is in Q{t,x, € ).

ii) a(Q(t,x,€), R(t, x)) <« 32€/4, To show this one notes that
R(t s x ) r’&(R(t,39 xj)g €/h} (.:.Q('t39 X € ) for all

ig j = 19 29 o o o g n+'20 Therefore
d(R(t,x),Q(t,x; €) = d(R(t,x), R(tjLSJ xi)) +
a(R(t, x,), %: oy Aty X, ©0) /8 4

mj}x [d(R(tig x )o@ty Xy, € )] < €/8 4

nax [aRC; s ) 0RCE, xPealR(t, %),Q0t,, xp€D)] = 3€ /b
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iii) Q(t,x,€) is strictly convex, with smooth boundary having positive

Gaussian curvature, for each (t,x) . Indeed of K(t,x,vl,...,vn-l)
is Gaussian curvature at the point g(t,x,vl,oo,,vn-l, 1)e dR(t,x,e),
1 1, 1 n-1
then K(t, X,V 4000,V ) = } oéi K(ti, Xis VigoonsV )o
i=1

iv) From the construction, 5€ (tyx,v) is analytic in v for fixed (t,x)

and continuous in (t,x) for fixed v.

Combining the results of i) and ii) shows that for (t,x)€ 00',
N(R(t,x), €/8) C Q(t,x,€)T N(R(t,x), 3E/4).

It will next be shown that using g (t,x,v) one can construct a mapping
€ €
h™ (t,x,v) on A x B — % E® such that if R(t,x,€) = gh(t,x.v):ve Bn} .
then R(t,x, £) is a strictly convex, compact set containing R(t,x);

d(R(t,x, €),R(t,x,))< € 5 OR(t,x,€) is smooth with positive Gaussian

€ - . .
curvature, and if n(t,x,h~ (tgxgvlgomgvn 191) is a unit normal to

éR(tgxgé) at h€ (tyx, vl,o“gvn-l‘, 1) then it is a C:l function of all
arguments.

For simplicity of notation let y = (t,x) denote a point in 06* , and

let Sk(ym;) be a mollifier function; see [7] . As an example one could

n+i r n+l

. . 2
choose  SM(y-y) = (W/ATT) © exp {% [Z o -3 ] :
i=1

Extend gE' (y,v) as the zero function for y in the complement of M- .

ok = E Ty an
Define h (y,v) :f Sk(y*y) g (y,v) dy .

En+1
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Then for every integer k =0, hk is an analytic function, while hk and its
derivatives with respect to v tend uniformly to g€ and its derivatives

with respect to v.

i

Let Rk(t,x, €) = {hk(t,x,v): v € B® % Since the Gaussian curvature to

0Q(t,x,€) is given as a multilinear combination of the derivatives

1

gevt(t,xgv ,Mo,,vn‘]}l) while the curvature of o Rk(t,x,e) is given by the

s . . . . k . 1 n-1
same multilinear combination of the derivatives hvi Eexg v 000,V ,1); one

can choose k sufficiently large so that c\in (t,x,€) has positive
Gaussian curvature while R(t,x) Hk(toxg €)C YWR(t,x),€). For such a I

choice of k, define n (tox,v) = hk(tvx‘v),, R(t,x, &) E{he(tgx,v):veBn} .

From its construction, h® satisfies conclusions a), b) and c), while a
unit normal n(t‘,xghe’ (t9x9v19°°°9vn-191)) to OR(t,x,€) is a C1 function .
of (t,x, vlgwwvnwl)e -

It remains to show part d). Using lemma III.3 define r*(t,x,p; €) as
the unique point on OR(t,x,€) such that n(t,x,r*(t,x,p,€)) = p/Ipt . It
will be shown that r* is a C1 function of t, x, and p by a proof similar
to that of t‘heorem III.2. Defining v*(t,x,p) as the unique point on 98"
such that h® (tyx,v*(t,x,p)) = r*(t,x,p,€) it follows that v* maximizes
H(t,%,p,v; €) and it will be shown that v* is a C' in t, x and p.

For fixed (t,x), we have

€ 1 n-1 ’
RO (teX,V 000,V j,1); BR(tgxge):n(t’x’r) - g0l

“
’ -

which naturally induces a map Q(t,xyvl,ooovvnml) from S%1 4— & g1 de-

fined by Q(tgxgvlgoo.gvnal) = n(t,x,h€ (tgxgleOOO,vn’l,l))o' Since we are .
only interested in 3 B" - Sn‘l9 no confusion should occur if for the re-

. . 1 n-1 n-1 .
mainder of this argument we let v = (v, ..o,V ) €8 and therefore write

o(t,x,v). This will be done.
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Let P= $Ap) = p/iph , p€E"- §0} and define

G(t,x,v,¥) = o(t, x, v,) -¢Z . We will apply the implicit function
theorem to G, which is easily seen to be a Cl function. For each

to' X0 Vo = po/lpol , there exists a unique point
— * . i -
ro=r (to, X po,E) such that if n(to, Xy ro) = po/lpol and v is
the unique point on Sn-1 such that nt (to,xo,vo) =T then
G(to, X1 Voo Qﬁo) = 0. One next notes that Gv(to,xo,vo. wo) = Ov(to,xo,vo),

and from the definition of © (see also the proof of theorem III.2)

det [Ov(to’ X vo)] is the Gaussian curvature at ro€ OR(t, x, € )
which is positive. The implicit function theorem yields the existence
of a C* function v(t, x, ) such that G(t, x, v,(t, x, ¥), ¥ ) =0 in

a neighborhood of the arbitrary point to’ X %o Then
r*(t, x, p; € ) = n€ (t, x, v(t, x, ¥p))) € Cl, while

v*(t, x, p) = v(t, x, GZ(p)) is also Cl..
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THE RELATION OF TRAJECTORIES OF THE APPROXIMATING PROBLEM TO THOSE
OF THE TIME OPTIMAL PROBLEM

We assume the system (3-1) satisfies the Fillipov existence conditions
(3-3), (3-4), (3=5) and (3-6), with tl a time in which the target set S is
attainable., For any € > O let n€ (ty, x, v), vEV(E), be an € approximate
equivalent problem (not necessarily having the special properties shown to
exist in theorem III.4). From condition (3-6) and the relation
R(t, x,€ ) D R(t, x), it readily follows that for every € > O there exists
at least one measurable function v with values in V(€ ) such that the
corresponding trajectory Ve( e ; v) of the € approximate problem
attains the target S.

It will next be shown that when dealing with the approximate problem,
analysis can again be restricted to a compact set. Indeed any vector
n€ (t, x, v) can be written as £(t, x, u) + o{(t, x) where |ol(t, x)|% € .

Then for any trajectory x(t) of the aprroximate problem

34 k(0] 2 = x()hE (£,x(6),v(8)) =x(£) + £1t,x(8) 3u(8)) +x( ) oL(tyx(£))

= C(1 + |x(t)]2) +elx(®)] .

%E In (1 + |x(t)|2):2c+—2—e—b[(;)|2—: 2 (C+€),
1+ Ix(¢)l
2(C+E€)(t -t )
Ix(0)12 =1+ x| 5)e 1o,

€
Define 46' to be the compact region in En+1 dimensional (t,x) space

2 2 '
so that [x|° =(1+ EN ) exp [2(C+€)(2 tlato)] » b= t =2t .

Theorem II1.5. Consider a sequence {ek} with Ek > 0O, Gk — 0

€
and let ¥  denote the time optimal trajectory (assumed to exist) for
€
k
the €k approximate problem. Then {Sﬂ } is an equicontinous family on
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L3

the interval [to’ tl ] . It has a uniformly convergent subsequence

which converges to a function 90. having the following properties.

*
i) ¢ is absolutely continuous
ii) There exists a measurable function u* with values in U
LR , *
such that % (t) = fit, ¥ (t), u*(t)) almost everywhere.
*
iii) There exists a smallest t* > to such that GP(t*)E€ S

*
iv) ¢ is a time optimal trajectory for the system (3-1).

Proof We shall prove the conclusions in the order that they are stated.

Without loss of generality, assume that R(t,x, Gl)DR(t,x, 62)3 cee JR(t,x).

€
Therefore analysis can be restricted to the compact region 96- 1., Our first

goal is to show that there is a constant N independent of Ek such that

€x

gp' is Lipschitz continuous with Lipschitzconstant N. To accomplish this,

for a compact set R in E" let /o(R) denote max |rl . For fixed €1,
r€R

R(t, x, Gl) is a continuous set valued function (in the Hausdorff metric
€
1
topology) on the compact set A and therefore the composite map
€
1
e (R(t, x, 61)) is a continuous real valued function on & , hence bounded.
€k
Let N be its bound. It follows that lh (t, x, v)I = N for all €k
€x
and any trajectory ? is Lipschitz continuous with Lipschitz constant N.
€

e 7

*
uni formly to a Lipschitz continuous function ;0 , which is therefore
€y
absolutely continuous. We will not distinguish between {;ﬂ %and its

k
is equicontinuous and has a subseguence which converges

convergent subsequence.
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i1) We next show that for almost all te [to, tl)], G (e R(t, & ().
Since the set function R(t, x) is continuou.s in the Hausdorff metric
topology (a consequence of the continuity of f), for any Y = 0 let -
R, (t, x) be a closed convex V - neighborhood of R(t, x). Then Ry (t, x)
is also a continuous set function.
Since ¢ek (t) € R(t, gﬁk(w, €k) and R(t, x, ek) — R(t, x) in
the Hausdorff metric topology, there exists and N such that for all
n = N, fﬂek(t) €R,, (t, @*(t)). Fillipov's proof of theorem 1, [2] .
now applies to show that for almost all t, sﬂ."(t) € R (t, #*(t)). But
R(t, x) is closed and Y arbitrarily small, hence ?‘(t)é R(t,;ﬂ‘(t)) for
almost all t.
From the lemma of Fillipov [2] , we then obtain the existence of a .

measurable control u* with values in U, such that for almost all

te [, )l PR = £, Pr(e), wr(e)).

iii) Let t, = t, denote the optimal time for the G’k approximate
k

problem. Since R(t, x, € )D R(t, x, € )D soo it follows that

{ }is a monotone non-drecrea81ng sequence of reals bounded above by
t,o Let t* be its limit. Now V (t ) € s for each k; and
k
n+l e-k
(tyx) €S5: t =t=t is compact in E , thus ¢ " (t_ ) —» ©*(t*) € s,
o 1 ék
iv) Suppose gﬂ‘ is not a time optimal trajectory for the system ‘

(3-1). Then there exists a measurable control u with values in U and
corresponding trajectory ¢(*; u) such that ﬂto; u) = X

?(tB; u) € S and t3< t*. This implies that for k sufficiently large,

t,< t ; but (*; u) is an admissible trajectory to all € approximate
3 €

k €x
problems. This contradicts the optimality of ¥ . [ ]
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This theorem essentially tells us that for sufficiently small € ,
the optimal trajectories of the € approximate problem are uniformly
close to an optimal trajectory of the original problem.

In the next section the "smoothness" which theorem III.4 shows is
possible for the feedback control of the € approximate problem, will

be exploited to obtain solutions.

Hamilton-Jacobi Theory

Let the time optimal problem for (3-1) satisfy the Fillipov existence
conditions. Let ; = & (t, x, v) denote an € approximate system with
the properties a), b}, c) and d), shown to exist in theorem III.4, For
the time optimal problem associated with the approximate problem we de-
fine the functions

H(t, x, p, Vv, € ) = p- ne (t, x, v) - 1

B*(t, x, p, € ) = B(t, x, ps vi(t, x, p), € Yo

The ineguality

(3-8) H(t, x, p, v,€)>H(t, x, p, V,&) for all v € B, v £ v

is a consequence of the definition of v*.

For the sake of completeness we repeat a short argument of Kalman([l] s

pp. 321-322) to show that for fixed € >0,

H;(t, X, P,E ) =P -hi (t, x, v*(t, x, p))
< *
H;(t, X, p, € ) = h (t, x, v*(t, x;, P))-

Indeed, we know that v*(t, x, p) €9 B® = Sn_1 thus let g(v) be a smooth

9

relation such that g(v) = O determines Sn.1 in a neighborhood of v*(t, x, p).

Then SV(V‘(t, x, p)) V;(t, x, p) = 0 and gv(V*(ts X, p)) v;(t, x, p) = O
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Noting that v* maximizes H(t, x, p, V, € ), we consider this maximization

subject to the constraint v € §° %

v i.e., g(v) = 0. The Lagrange multiplier
rule implies H, + z/gv = O where VY # 0. Evaluting this at v* and multi-
plying on the right by v;(t, X, p) and v;(t. X, p), in turn, gives the

required result.

€ €
If 9’, Y are solutions, respectively, to the boundary value problem

(3-9)

H;(t, X, Py € ) = he(t, x, v*(t, x, p))

(3-10) —H;(t, X Ps €) = - P 'hi (ts X, V*(to X, P))

o)
]

with boundary data x(to) =X, x(tl) = x,, then (3-8) shows that

1°
€ €

vt (t, ¢Z(t), W (t)) satisfies the necessary condition termed the maximum

principle, for being an optimal (open loop) control for the time optimal

problem of attaining the state xy from the state X, for the approximating

system.

It should be noted that under the conditions assumed, v* € C1 and the
initial value problem for the equations (3-9), (3-10) with data given at t,
will have a unique solution in a neighborhood of to° If v* is discontinuous,
this presents a serious difficulty in the application of the maiimum principle.

With the (Hamiltonian) function H*(t, x, p, € ), € > O and fixed, we

associate the Hamilton-Jacobi partial differential equation

(3-11) Vt(tgx) + H*(t, x, Vx(t9 x), € ) =0,

Let the target S be a "smooth" n-dimensional, non-characteristic manifold
in the (n+l) dimensional (t,x) space, and prescribe the Cauchy data
V(t,x) = 0, (t,x) € S. The solution, in the classical sense, of this partial

differential equation problem, we denote by Ve'; the domain of solution by

He, s).
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The characteristic equations associated with (3-11) are the
equations (3-9), (3-10). If a point (t_, x ) is in e, s) there
exists a point (tl, xl) € S such that the boundary value problem con-
sisting of the equations (3-9), (3-10) with boundary data for (3-10)

being x(to) =X, x(tl) = x,, has a solution. The solution of such a

1
boundary value problem, when it exists, will be denoted by ¢ e. %6.
From the continuity condition, for each € > O, Vi(t, sﬂe(t)) exists
and satisfies equation (3-10). (See for example [1] ). Thus we can
make the association Sbe (t) = Vj (t, Ve(t)).
Let A7(€, S) denote the set of points (to, xo)é v&‘(e, S) for

which tof ts (tl, xl) being the point on S joined to (to, xo) by a

€ -
curve ¢ . Assume (to, xo)e A (€, S). If we use the initial data

_ _yuy€ . . . .
x(to) =X, p(to) = Vx ‘(to’ xo), by virtue of knowing a solution of the

partial differential equation we have the proper initial data to reduce

the previous two point boundary value problem for (3-9) and (3-10) to an
€

initial value problem. Thus to determine the trajectory sﬂ we can

consider the system

(3-12) ; = H;(t,\ X, v: (t, x); € ), x(to) =X o

The major advantage of this method is that now v* = v*(t, x, Vi’ (t,x)),

i.e., a feedback control.

Theorem I1I11.6 (Kalman) Assume (to, x°)€ A°(€ s S)s v€ is the solution
of the Hamilton-Jacobi equation (3-11) and Vé the solution of (3-12).
Then ?e is a time optimal trajectory relative to all trajectories

;ﬂ( * s v) which connect (1:09 xo) to S and lie in A (€, s).
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Proof Assume, without loss of generality, that (to, xo) €S,

From the definition of H, H* and V&

0= V:(t, x) + Vi(t, x)» 15 (t, x, v*(t, x, V:(t. x))) -1 >V:(t, x) +

V:(t, x) -he(t, X, v) -1 for all vEB®, v # v*.
€
Assume that t¢ (tg > t ) is the first time such that (tg , % (tc ))€ s.

€
Let Q denote the set of measurable control functions having values in B"
and leading to trajectories of the € approximate problem which connect

- €
(t s x) with a point on § and lie in A7(€, S). Then Q0 is not empty since ‘

(to, xo) ed (e , S) and sﬂe a characteristic implies

{(t, §ﬂ€(t)): t,=t= te} is in A 7(e, 8). 1If v*(t,sﬂe(t), vi(t,;ﬂe(t))
is the only function (to within a set of zero measure) in Qe, the result

is trivially true. If this is not the case let v = v(t) be any function in
Qe differing from v*(t, Sﬂe(t), Vi(t,}ﬁé(t))) on a set /\_of positive
measure. Let sﬂ(' ; V) be the corresponding solution of the approximate
system and t. the first time such that (t2, gp(ta; v)) E S. (t

5 > to).

We must show te < g

2
2 o
Calculating

¢
v, @ v - 12 vk, @Ew) + v, PlE) e B (£,90(85v), () -120

for all t and strictly less than zero for t & A. , implying

VvE (6,0 Pliy v) - Ve, x ) < ¢

€
5 - t_. But v (t2 gﬂ(ta; v)) =0

. € _
a i i - < -
since (te, gﬂ(ta, v)) € 5, yielding -V (to" xo) t2 to" Similarly

a € € . . € -
Ty s .(t,% (t)) -1 =z O implying - V (to’ xo) = te - to.,_ Combining the

last two inequalities gives t:e < - t, as was to be shown. .

2

114




~u

THE CONSTRUCTION OF APPROXIMATING PROBLEMS WHEN THE CONTROL APPEARS LINEARLY.

Theorem III.4 gives conditions for the existence of an € equivalent
approximate problem which has the unit ball B® as the set of values which
the control can assume. However, the functional form of the approximating
system is allowed to vary with € .

In this section we consider a system of the form

(3-13) x(t) = g(t, x(£)) + H(t, x(t)) u(t),

u(t) € U, a compact convex set in E® with 1 =<r =n; H an nxr matrix valued
C2 function; while g is a CZ, n vector valued function. For such systems
it is possible to provide a simple comstruction for € approximate problems,

Since, for the approximate problem, one desires R(t, x, € ) to be strictly
conveX and lemma III.l shows this implies non void interior, one is led to
extend H to an nxn matrix valued function and approximate the control set by
a compact set V(€ ) which contains U. Furthermore, V(€) should have a non-
void n dimensional interior, a smooth boundary with positive Gaussian curvature,
and be such that in the Hausdorff metric topology, lim V(€ ) = U.

€e—0
The method of construction and the application to approximating problems

will be demonstrated in a two dimensional example; its generalization to

higher dimensions being immediate.

Example III.1 (Bushaw control problem).

Consider the time optimal problem for the system

(3-14) x
1

*

X = -Xx., +1u
2 1

with arbitrary initial data x(0) = X0 and target S = {(t, X)s xz):

x) = 0, x2 = O}. The control u is to satisfy -1 <=u(t) <1, i.e., U = [-1,1] .
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As an € approximate problem we take the system

~~
N
t
'—l
w
S
»
i
»
+
<

with the same initial data and target, but with V(€ ) = {veEaz v12+ €2V22: ezj ,

i.e., an ellipse with semi major axis 1 and semi minor axis € . Thus in the

Hausdorff metric topology 1lim V(€) = U, and OR(t, x, € ) is smooth with

. o
positive Gaussian curvature. From the Hamilton-Jacobi theory

H(t, x, p, V,€) = PyX5 + PyVqy = PoXy * PoVs - 1.

Using lemma III.3 one computes

~¥
2 2 2 2 2 2
vt(t' x9 P‘ = (€ pl [e Pl +p2 ] 9 p2 [e pl + p

from which it follows that

% )
2 2 2
H*(t, X, ps € ) 5 PyX; - DXy ¥ [pl € +p, ] - L

The associated Hamilton-Jacobi equation is

. %
V(6,00 - x; Vo (£,%) +[e2vx2 (t,x) + vx2 (t,x)] -1 -o.

(3-16) V. (t,x) + x
1 2 1 2

2

Since the independent variables appear linearly, while the dependent

variable has derivatives which appear non-linearly, the Legendre contact ‘
transformation is suggested. Let V(t,x) = W(t,p) - p. x. Then v, =W,
Vx =-p, wp = x and the transformed equation is

] .

2+p22]-1=0.

2
wt(tvp) - pl wpa(tsp) + P2 wp (tsp) + [€ pl

1

The characteristic equations associated with this linear partial differential
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equation are t'(T) =1, pi(T) = pa(T), pé( T) = - pl(T'), yielding

solutions: t =¥ +T P, = ol sin ( T'+ﬂ). P, = c{cos (T + /6) with

oL, A2, ¥ arbitrary constants. Then g? we(D), p(T)) = 1-[€2p12(T)+ 1’22(7-)]’é

which, after a slight calculation, gives
(¥-¢) %
W(t‘PI.PZ; ©,¥)=t-B+5+ [G.Z(p2 sinT + P, cosT )2 +(p, cos'l—'-p1 sinT)z] dt.

o
For a time optimal problem with autonomous system equations and target a
a point in state space, the constant ® is inconsequential. We consider
® = 0 and omit further reference to it.
By virtue of the transformation, solution trajectories to the system
(3-15) with v = v*(t, x, p) are given by x(t;a(,/, ¥) = Wp(t,p(t; (.ﬂ);X)

or specifically
(¥-t)

d,éz in(2 T +8)cosT- olcos (2T+42) sinZ"
xl(t; 0(,’/6’, x) = > /g ° ﬁ % a7
[620L2 sin2 (2T+8) + o(_2 0052 (22"4;5) ]

0
(¥- t),
ol €%sin(2 T+/3) sinT + olcos (2 T +&) cosT
xa(t; o(,/é, ) = >3 5 > > % aT
‘ [E o© sin“(2 T+ 48) + of° cos (2T+/6)]
0

These formulas can be interpreted as follows. If we choose ¥> Oand t = O,

{x(O; o(,,ﬂ , 0): (o(l,@) € Ezg gives the set of initial points x  from

which the origin can be reached in time ¥ by trajectories which satisfy
(3-15) with v = v*(t, x, p). In particular, it can be shown (via the theory

of homogeneous contact transformations) that the jacobian determinant
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3 (xl,xz)
> (o, &)

a closed curve in E2 for eachx > 0.

is zero, and in this case the set of initial points forms

To generate a field of extremals (it is to be cautioned that the term
extremal is to be taken in the sense of the classical calculus of variations;
i.e., not necessarily to infer optimality) choose ¥ = 0 and replace t with -t
in (3-17). For each choice of o(,/& one obtains an extremal which is at

the origin at time zero. Varying o(,/g now gives a field of extremals. .
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SUMMARY

A method is presented for finding an extremal solution of launch trajec-
tories involving certain inequality path constraints. The method of solution
is an extension of a technique outlined by Denbow. Denbow has formulated the
problem considering two or more intersecting admissible arcs; and by a suitable .
transformation of the independent variable, these admissible arcs may be trans-
formed into a single admissible arc in the problem of Bolza., The transformation
leads to additional transversality conditions at the intersection of the arcs in
addition to the usual set of tranversality conditions at the final time.

The problem considered in this report is the maximization of final weight
and is solved numerically by the Mayer formulation of the calculus of variations.
The problem is represented by three arcs - two unconstrained arcs and one con-
strained arc due to the inequality path constraint.

The optimum control variables are obtained from the Euler-Lagrange equa-
tions while the trajectory is moving along the unconstrained arcs. While on
the constrained arc of the trajectory, the control variables are determined
from the constraint equation,
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Section I

INTRODUCTION

A method is presented for finding an extremal solution of exit phase
trajectories involving certain inequality path constraints. The example
problem considered involves determining the optimum control program to extre-
malize any desired functional of the coordinates (final vehicle mass). The
method of solution employed is an extension of the classical method of the
variational calculus as outlined by Denbow. Denbow has shown that two or more
admissible arcs can be transformed, by a suitable transformation of the inde-
pendent variable, into a single admissible arc in the problem of Bolza. The
problem of concern has three admissible arcs as shown in Figure 1. The results
of Denbow's work indicates that at the intersection of these arcs certain trans-

versality conditions must be satisfied in order to insure an extrema over the
trajectory. ’

The matrix form of the transversality equation is used to determine the
necessary transversality conditions. In addition to the final transversality
conditions, certain other transversality conditions must be determined at the
intermediate points (corners of arcs) along the trajectory.

The equations of motion are written for a point mass in three-dimensional
space in an inverse-square gravitational field. The optimum control variables
are obtained from the Euler-Lagrange equations on the unconstrained arcs of the

trajectory and from the constraint equation while on the constrained arc of the
trajectory.

This report presents the solution to the problem as a result of the
application of Denbow's results.
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Section 2

MATHEMATICAL FORMULATION

2.1 Statement of Problem

The problem may be stated as maximizing the vehicle mass to some given
set of end conditions through first stage flight. In addition, certain in-
equality path constaints are imposed on the trajectory. The statement "first
stage flight" entails the meaning of flight within the sensible atmosphere.

The particular constraint considered in this report is the product of the angle
of attack of the vehicle and its dynamic pressure. This type path constraint
gives an indication of the aerodynamic loads the vehicle will encounter; hence,
this constraint may be used to control the structural bending.

The method of solution chosen is an extension of a technique outlined by
Denbow, Reference 1. This method is essentially the classical calculus of
variations technique developed by Bliss (Reference 2).

Denbow has shown that the original problem may be transformed to an equi-
valent problem of Bolza (the Mayer formulation is used) by a suitable trans-
formation of the independent variable., This transformation takes the three
subarcs depicted in Figure 1 for our problem and combines them into a single
admissible arc. The results of Denbow's paper applied to the stated problem
lead to additional transversality conditions at the variable intermediate
points t, and t& .

2.2 Equations of Motion

The equations of motion are written for a space vehicle traveling in an
inverse-square force field. Three degrees of freedom are used to describe the
motion about a non-rotating spheroid. The trajectory variables are defined as:

-

ALY Vehicle Mass
i ~ —RI Inertial Frame Position Y- (2.1)
:L Inertial Frame Velocity 5}:3 *;\ ',
and the control va;iables ;s:
[ & | Tnertial Roll Attitude of Thrust Vector
& = | X | mertial Pitch Attitude of Thrust Vector  (2.2)
T Inertial Yaw Attitude of Thrust Vector
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Time, t, is taken as the independent variable. The mass flow rate is constant
and the thrust vector, T, is assumed to be directed along the longitudinal
axis of the missile. In addition, roll effects are ignored throughout the

analysis.
The powered flight equations are then
, ™
X = VL (2.3)
A+ Gy

where K , is the non-gravitational acceleration vector in the inertial frame.
The thrust and drag are given by

AI = -EC?LC.T

A, - Eoexst

IY - e
-_F
AI; = Ms%
(f\.'n{r‘. (X=(oey 4 8% Es(ny 75“‘\)
where
r: = 7;-‘ F;(

TA‘ = {:hms'{: ot olfi{.uée. a{omi )(M- a¥18
Fy = dvoaq alo»\j Yo AYIS

and G is the gravity vector in the inertial frame. The aerodynamic 1lift force
has béeen neglected in this formulation. The addition of 1ift would add ex-
cessive complication to the control equations and require supplemental iteration

to arrive at a solution.

For consistency in nomenclature, the differential equations of motion for
our problem will be written in the following vector notation,

— _ —_— B "' - " 1N - . .
q’a = x(ﬁ S(s(x)’»t); (Qﬁ“ LA, "7) (2.L)

where Yg is given in equation(2.3),
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and

L
~
J

[

;

4~ oo

,.' »

- -

is a ? -vector of known functions of XU:), Alt), and t , assumed ‘everywhere
differentiable with respect to ¥ andm,

2.3 iVIayer Formulation of Problem

The functional to be maximized, Equation (2.7) is written directly in
terms of the boundary conditions. Since the functional does not involve an
integral (as in the problem of Bolza), the problem can be stated using the
Mayer formulation of the classical method of the calculus of variations. The ‘
Mayer formulation of the problem may be written explicitly as: In a class of
admissible arcs, X; (), satisfying the differential Equation (2.k)

¢ﬁ:xfg—{}<x’/’()t) = 0O
and end conditions of the form
\\M = Y\M(X-F}/:({) (2-5) -
as well as the inequality path constraint
Gs: .0 = \a( B D,
v 1% 14 (2.6)

where <;is the total angle of attack and aV is defined as the dynamic pressure,
find the specific arc that minimizes

= = (=

T o= oq(T,4)

(2.7)
It may be recalled that the problém of maximizing final vehicle mass’ WL,,-B is
jdentical with that of minimizingl-w ‘(_\.

The problem is shown schematically in Figure 1. The intermediate points
t, and 1, , vary with each independent trajectory. The entry corner, t,, (point
where the trajectory goes from unconstrained arc onto a constrained arc) is
defined to be that time at which the product ot § just equals to the maximum
allowable value. The exit corner (point where the solution goes from the con- ‘
strained arc onto an unconstrained arc) is denoted by ‘Lz . The criteria for
determining this time, t 20 Will be given in the Section on Control Equations. *

By the calculus of variations technique, an extremal solution must satisfy
the following Euler-Lagrange equations given explicitly as

.
—

5T '
) (1) 4 A S-i— = 0 -

- (2.8)
DRES i <o

AY¥
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where - » ]

W) = (2.9)
A7 (1)

=T
is a vector of Lagrange multiplier furfctions ard )(’Q is the transpose of
7 (t).

The above Buler-Lagrange equations were derived explicitly through use of the
augmented function

.g' = 73 EE?
), (5(, - m) + 22 {kz' Vx> + )3 (kz* vy\ + )4(’5(4’\/;.3(
2.1

1 )5(&"’[\‘\ # 2 XA+ D (/ka'z\)‘
2., Optimum Control Equations

i

0)

The optimum control variables, while on the unconstrained arcs (I and ITI),
are found by solving the second set of Euler-Lagrange Equations (2.8) explicitly
for % and T .

The optimum control variables, while the trajectory is on the unconstrained
arcs, are then found to be

—§ .1 - : —
. : . N\
= | = + -
M= 7~ | AN T T b A sT (2.11)
;- \
L J fAN-'{ -;._,'_\
- s

When the vehicle is moving along the constrained arc ITI, one of the
control variables may be obtained from the constraint Equation (2.6). This
reduces the degree of optimality by one for flight along the constraining
arc. (Although strictly arbitrary, it was decided to solve the constraint
equation directly for X ).

The pitch command angle, 74 , was solved from the constraint equation as
follows:

First, it was necessary to have the constraint equation as an explicit function
of the control variables. To do this, the constraint equation

W = dT%—LMéO LM:I‘*?!MAX,
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was redefined as
YEsin o g~ kL £ 0 (2.12)
without loss of generality, since for small allowable =+ *
Séh <1 = %T

Thus, the modified constaint equation is essentially unchanged. While on the
constraining portion of the trajectory,

Stn “T% = L

and a fundamental trigometric identity enables us to write

Stn oy = \5\-'0’0520(-, - L,\/ay ‘

Los'ot, = |- \:M/c‘b‘

or

The total angle of attack, ~t1 , is defined as the angle between. the thi‘ust
and velocity vectors, which may be written vectorially as

O is the vector dot product

>

(os ety = 4O )
\VI wl ] | is the absolute value
or explicitly in terms of the control variables this becomes

M .

>

Los 5 = XCM?:,;_T\M& 2 sx
N\

By substituting the above equation into the modified constraint equation (2.12)
and collecting terms, a quadratic in $iv ¥ may be obtained,

R <" ¢ ~‘“’T} s+ K= (hex +¥s2)* - o
4 2 +t(Xer ¥Ys2) 1 (Xen % o) (2.13)

where
<= (Ve )1l *

Hence, the pitch command angle, X , may be determined as a function of T on
the constraint.
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To solve for the optimum yaw command angle, U, on the constraint, it is
necessary to modify the second set of Fuler-Lagrange Equations (2.8)., The
above Equation (2.13) is solved for X in terms of 7 and substituted into these
Euler-Lagrange equations. When on the constraint, these modified Euler-Lagrange
equations may be solved explicitly to give

. \

- /o O - . e f R
3 28 et et = etk
] ‘\ </ / 0' \

eE N 8% _
St} — )7 -é't =) (2.1)

17

o'

The two equations (213 and2l};) may be solved by a Newton-Raphson iterative
scheme to obtain the control variables % and 7 on the constrained arc.

As described in the Section on Mayer Formulation of Problem, the entry
time, £, , is that time at whichd% equals the constraint limit,/, . Thus,
starting at time %,,7% will be detérmined from the constraint equation. The
criteria for determing the exit time, ‘J,',-A , will be established as follows: The
exit corner time will be defined as that time when chi solved from the constraint
equation is equal to chi if solved from the Euler-Lagrange equation. Then, on the
unconstrained arc ITI % and T are solved from the Fuler-Lagrange equations (see

Equation (2.11)).
2.5 Transversality Conditions
A method for determining transversality conditions was suggested in Hunt's
paper (Reference 3) and involved construction of the matrix shown in Figure 2.
The matrix form of the transversality conditions for the problem of Mayer was
formulated as follows
(a) Top Row
(A) Independent Variable (t,)
(B) The Dependent Variables (X, ) at %,
(C) Next (A) and (B) are repeated forl, , t,, and ¢,
(b) First Column
(A) Initial Conditions

(B) Boundary Conditions

IEvi \ +4
(c) 9 Xs, tg) of Mayer problem ?ok)Q

(D) Special Case - Partial Derivatives of augmented function,a?‘ s
with respect to X; .

(¢) The partial derivatives of the Q column elements with respect to the
row elements were calculated to complete the matrix. The blanks
on Figure 2 indicate zero elements. The transversality conditions
are now determined from the augmented matrix by the relationship
that all determinants of order Q + 1 must be equal to zero.
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As the entry point, t; s and exit point, t. , the evaluation of the deter-
minants results_in five independent transversality conditions relating the
changes in the ) S(denoted by A} ) across the constraint boundaries. For
the boundary points t, and t, , the TVC's are

Wy bhy =Wy d), = 0

Pyl - V30N, = 0

Uy A\ - WA, -0 (2.15)
P Wy b\, - Wydhs mo

Wy &hq = W3 dhg =0

The Lagrange multiplier )\‘ , associated with the mass_doesn't enter into
the equations and was omitted from the analysis. Another )\ may be set equal
to one due to homogeneity of Euler-Lagrange equation. This leaves five A s
. ( A3 to X\n ) to be determined. Investigating the intermediate points, we find
that an additional transversality equation is available at these boundary
points, 4 and %, .

From the augmented matrix, the following relations must hold:
‘D-/ L—) T

‘\X)t AR
Since the A\ Sare not zero , these equations stipulate that
" !

From the preceding section, it was seen that the constraint equation may
- be written as:

J' (r (\"T% -Lln =0

’ y : re
Y = Xexer + Yexser -2Z2sx -K = 0

where

L7 )

This equations ylelds

«J}x
‘ Ll)'(‘: “‘)‘(CXSZ‘ *chf'c = O

Simple manipulations of the optimum control Equations (2.11) give the following
relations:
) > »-5

Stn T~ N 5 cos ¢tz — oI
.\ )5"1 \

~Xsxer =Ysxsr ~2ex = ©
(2.16)

or Therefore,

: -)
tan X = ,___..',‘,A-—
ARV

133



- Jrac A
Stn X = o Cos X = JAst N,

DY Ay

where
- Y 1 7 s
‘ X‘ = d \s ¥ xu* \ﬂ
This gives
Stm > = Do) ’
TASNT = - Ty Sy cosy L - N M
RRRCRRE NAAVERS
(os X Losy = ___T;‘ s COSX sim = I-\;'ll
3 |
Substituting the necessary relations into Equation (2.16) and solving simul-
taneously, we obtain the following transversality condition valid on the .

unconstrained side of pointst,, and tz.

_ Z (2.17)
>\'1 = s ( X >

It is interesting to note that this equation enables us to determine
Adg or AX; at point t, from which the remaining137X's may be determined from
Equation (2.15). Thus, all the TVC's at point t, are trivially satisfied.

However, at the entry point,t,, the above TVC (Equation 2.17) is valid
on the left unconstrained side of the point. Therefore, we must isolate on one
of theA\Sat point 1, , from which the remaining A)'s may be determined from
Equation (2.15). Equation (2.17) then remains as a transversality equation that
must be satisfied at the entry point, t‘.

A specified .altitude and velocity was selected as end conditions for this
particular example problem. Velocity will be the "cutoff" criterion leaving
altitude as a transversality condition to be satisfied at the final time,‘t3 .
This set of end conditions gave simplified final TVC's focusing attention to
the intermediate TVC's at t,and t,. The remaining final TVC's are obtained
from the Transversality Matrix. The final TVC's are given in the following
equations., -

A{ - ;"stoP’ o

Ve =
TVCC2) = Nk -nY =
TVe (3% NaX = NaZ
TV (aYE Nt - DY
TVC(E)E MY - N2 T 0
Summarizing the results above, we find that there are five transversality
conditions to be satisfied at the final time,t; , and one remaining transver-
sality condition to be satisfied at the entry corner, t, . Thus it is necessary

to have six adjoint variables that we can vary in order to satisfy these six
transversality conditions.

L

O
o (2.18)
)

W

The total number of initial adjoint variables available at t,is seven.
However, one of these, namely ), , is associated with the vehicle mass and does
not appear in the transversality conditions and is omitted. One other
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may be set equal to one due to the homogenelty of the Euler-lLagrange equations.
This gives a total of five initial hY Sthat must be chosen. The sixth adjoint
variable free to choose is one of the A\ Sacross the entry corner, t, .

A systematic search routine is employed to determine the values of the
five initial )\'S and the 5)'s across the exit point in order to satisfy the ‘
transversality conditions. By satisfying these transversality conditions, an
optimum trajectory for the entire first stage flight results.

\
|
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Appendix A

REFERENCE FRAMES

A description of the four coordinate frames used in the analysis is stated
below. The relationships among these reference frames are shown on Figure 1A,
Tt may be noted that all reference frames are right-hand = coordinate systems.

1. R-Frame This Reference-frame has its Xg -axis through the prime meri-
dian at the time of launch and its Zg -axis through the North Pole. The YR -axis
is oriented to form a right-hand coordinate system.

2. I-Frame This is an Inertial-frame centered at the launch site with
the X1 -axis 1In the negative direction of the gravity vector, G, and Z7 -axis
at a given azimuth from North. The orientation of the I-frame is foun from
the R-frame by the following sequence of rotation:

(a) Rotation about the Zgp - axis by the longitude of the launch
point,

’
(b) Rotation about the new YR ~ axis in the negative direction by
the plumbline latitude, -

(¢) Rotation about the new Xg - axis in the negative direction by
the firing azimuth, 'AZL;

The azimuth is measured in the plane normal to the local geodetic or plumb-
line direction.

3. L-Frame This is the Local Horizontal (octangent)-frame which is
normal to the local geodetic or plumbline direction. The L-frame is transformed
from the R-frame by the following rotations:

(a) Rotation about the Zp - axis by the instantaneous longitude,<¢ .

(b) Rotation about the new Ié - axis by'(—w—%a, where ¥ is the
instantaneous latitude.

L. M-Frame The origin of the Missile-frame is at the center of gravity
of the missile with the Xy - axis forward along the longitudinal axis of the
missile. The negative Zy - axis is in the direction of aerodynamic 1ift. The
transformation is obtained from the I-frame by the Euler angle sequence of
rotation:

(a) Rotation about the X7 - axis by the inner gimbal angle, .
/
(b) Rotation about the new Z; - axis by the middle gimbal angle, 7 .

(¢) Rotation about the new Y" - axis by the outer gimbal angle, X,
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The three gimbal angles §., 2', and X are the command attitude angles.
They describe the orientation of the thrust vector in the I-frame.

The transformation matrices from one frame to another are given below.
These transformations are formed by successive rotations of the Euler angles
described in the preceding paragraphs. The transformation from R-frame to
I-frame, Tp;7 » is time invariant (remains fixed from launch).

quLDCLP" 'CHQ\,O S‘»DC¢¢‘SHZL°S¢D -CRZ\-D Sl»,, Slb, +SREL°C¢°
[TRZI} - S"pe C.\\J CLPD R L\\)p SQo N (A.l)
| “SRauo L% ‘S'qzws bo €0 = LRy 0 5%, S Ao S S, 3 CRgyvo 2,
[ -sbce ~sPsd <Y

[T J - 2 ¢ ° (A.2)

"C"Pcd) -C\\)S¢ -5y
) ]

[c"x C-

rr

CASTCT4SYSE (A STSE -SAcE ]

T

-ST
Cres CusE (4.3)

3
Lsxcr 5 ST - CXSE ST CE

r 1 r -

j TLypf = [Tisz ’ [Tﬁzll ':_TL2R J (4-4)

- )
The transformations Tgzm , and '12u are determined in a similar fashion.
The inverse (transpose) of each matrix is

[Tszp] = [Tnzs}-l = [Tﬁze:l-r

since all of the transformations are orthogonal.
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ABSTRACT

A three dimensional derivation is presented of the
equations and boundary conditions necessary to deter-
mine the minimum fuel orbit transfer path by optimizing
the thrust direction and duration. The formulation,
known as the Mayer problem in the calculus of variations,
yields a two point boundary value problem. A Newton-
Raphson method was used to attempt convergence of this
two point boundary value problem, but it was found to
be inadequate. However, with the final orbit unspecified
numerous solutions satisfying the Mayer formulation
were generated and then compared with the optimum
two-impulse transfer between the same two orbits.

This comparison is quite revealing; it shows f{irst,

that for the restricted class of orbits examined the
optimum two-impulse estimate of velocity increment,
or fuel required is very good. Second, it demonstrates
that although the optimum departure and arrival points
obtained from the impulsive and finite thrust solutions
may be quite different, the penalty in using the former
for design estimates may be quite minor.

142




INTRODUCTION

In this report we are concerned with the problem of moving a vehicle
between two arbitrary orbits in space. The orbits are assumed to have one
planet as a common focus which generates a uniform central gravitational
field, and the vehicle is assumed to be capable of thrust direction and on-off
control. We present a complete derivation, in three dimensions, of the
equations and boundary conditions necessary to determine the minimum-fuel
orbit transfer path by optimizing the thrust direction and duration, and the
departure and arrival points on the initial and final orbits. The Mayer
formulation of the calculus of variations is used.

We turn to optimization procedures for finding the transfer path for
three reasons: First, the problem of realistic minimum fuel requirements
for space maneuvers is one of extreme importance. Second, for the
purposes of design studies based on impulsive transfer, it is necessary to
know the error made by the assumption of impulses. Third, the optimiza-
tion technique gives an organized and general way for finding a transfer
path; it is a procedure that is of significance no matter what quantity is to
be extremized, since it provides a suitable steering program to accomplish
the desired mission.

Selection of the optimization technique is primarily decided by what
has been reported in the literature, and the experience of the investigator.
Either the indirect method-use of Lagrange multipliers-or the direct
method-steepest descent-can be used. Reference (2) reports a successful
application of the Mayer formulation to the problem of boosting the
maximum payload into orbit with a high thrust engine. Reference (3) also
uses the same method successfully on the problem of coplanar orbital
transfer with very low thrust engines. Both applications utilized the
Newton-Raphson method as the principal iterative technique for solving
the two-point boundary value problem. These reports were the main
factors in this selection and in the initial approach to the two-point boundary
value problem used in this study.
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I. EQUATIONS OF MOTION:

The kinetic energy per unit mass is:

.2 .2 2 2 . .
P =1/2 (r +r29 + r cos 6¢2); see Fig. 1. .

The potential energy per unit mass is:

The Lagrangian, L = P - V:

.2 22 2 2 2
L =1/2(r +r 6 +rcos9¢>)+—Fi
r

The three second-order equations of motion are obtained from:

d oL oL

where the q; are r, 6, and ¢. The Q, are the generalized force and
moments due to the thrust, T:

T
Q =-— cos { cos V
r m
Qe :-%]- r sin
Q = L r cos y sin v cos O
¢ m v
Thus, the three second-order equations of motion are: ‘
"1‘
hdhd . 2 12
r—rez—rcose¢ +}L—:lcos¢cosv (1)
2 m
r
d 2. 2 2 T . "i
it (r ) + r cos 6 sin B¢ —mr51nq; (2) |

*See also references 4-6.
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d 2 2 . T
— (r cos ng):T-n r cos y sin v cos © (3)

dt
We want the thrust, T, to be either on or off. Hence, we define T = cB,
where ¢ = an effective exhaust velocity, and 3 = mass flow rate.

: ML
Check dimensions: [T] = F = — ’0}3] = % .

T T
Expanding (2) and (3), and noting that we cannot have 6 = % -;‘—r , we get the
following seven first-order equations of motion, where new variables p, x, .
y are defined as indicated:
W, = r-p =0 (4)
W, = 6 - x =20 (5)
= - =0 6
vv3 = ¢ y (6)
2 2 2
w45{)-rx - rcos Oy +—%-E£cos¢cosv:0 (7)
T
_ 2 p_X ) 2 ) cB . _
W = X + " + cos O sin Oy -y it Y 0 (8)
2py cP cos y sin v
= - - =0
W, Sy 2 tan 6 xy + —— T cos 6 (9)
W = m+ g =0 (10)

The optimum path (for min. fuel expenditure) that is to be found must '
satisfy the equations of motion, and this is represented by constraints,
Wl = 0, i=1-7.

There is one further constraint to be added: We require the thrust to
be on or off--no throttling. This is expressed by:

w

1l
™
=
!
=y
~—
1
o

8 max.
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Hence, problem variables are:

-
Dependent Independent
Dynamic and kinematic Control
» . T ——
r o} U] t
0 X v
¢ y p
m

Denoting all dependent variables by z, the constraints can be expressed as:

wi:Zi-fi(Zj):o i=1-8, j=1-10

at
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II. DERIVATION OF OPTIMIZATION PROBLEM

A. Since the quantity that we want to minimize only enters in the
boundary conditions (we use the Mayer formulation of the calculus of
variations), let us first obtain the Euler-Lagrange equations associated with

the control variables y, v, B.

F o= Ki(t) we (ii, Zj)

Require:
d OF OF ‘
— - =0 z, =v,y, P
dt 9 =z. 0z
i i
ON . W ow
oF . i
= -0 & —Ld = J =0
0z 0z, j 0z
i i i
1.) z = v
cp . - cP cos Y cos v
(2 ) oo :
4 mCOSLPSan * 6< mr cos 6 > 0
cP N os U si \  Cos Yy cos v]_ 0
m [ 4 © sy - AT cos 81
If 3 = 0, then T = 0 and y and v have no meaning, and we simply compute

the \;(t) by a closed-form solution which is given in Appendix A, For
B = 0, and c and m = 0 for all t:

)\6c05u
costfJ[)\4sinv rcosO]hO
m )\6
LEither ¢ = :h—z-, or tan v :W (11) .
N )\4rcos 0
Sosin v = TD oSV =T ip (12), (13)
v v

*See also references (7)-(9).
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where

2 2 2 2
o, -V
)\6+)\4 r cos 0O

v

Y Note: From equations (7) and (9), that if ¢ = % w /2, the v terms drop out,
as expected on physical grounds.

2.) z = ¢

_CB
1N
+ SImr

If 3 = 0, then the argument is the same as above. For g = O:

cp sin  sin v

=0

coqu] +)\6[

mr cos O

‘ )\4[%sin¢cosv

N, sin v

6

- X ’ - =
51n¢[r 4cosv+ cose] )\Scoqu 0

Insert (12) and (13) for sin v and cos v, and collect terms:

£ D
sin V—X5cos¢:0

. cos ©
) sin N 5 COS ¢]
cos U = tan Y :_—iDv (14)
3.) z =
-cC -c . ' - c cos § sin v
== x| == x
4[m coquCOS\/] + 5'mr 51n¢] + 6[ T o5 0 ]
+x7(1)+x8[(ﬁ-ﬁmax)+ﬁ] =0 (15)
. This equation yields X\ g, but it is of no significance in this problem.
B. To reconcile the sign ambiguities in 1.) and 2.), above, and to
determine when 3 =0, § = , we turn to the Weierstrass necessary

... max.
. condition.



1.) This condition states that for a minimum, E > 0:

ale
. * s

E:F(Zi,Zi)-F(Zi, Zi)- 7: (Z. -Z)az

i i

ale

Z1 differs from Z, by a finite, but admissible amount.

The only variables which admit of such strong variation are v, {, and
8, where, for example:

= o + = o + =0 ‘
Y y or m™ v v or v m™ B orﬁmax.

Now, the third term in E is identically zero since there are no constraints
involving ¢y, v, B.

E =\ * z:.\ 1 i = -

) oo w2, Z,

1

E =0 [2] - g (@ IR G E A A CN) I

e

E =2\ ()f (Z) - \(E (2 > 0
i 1] i 1]

or

NADE (Z) 3 N A(DE(Z)) (16)
i i i i j
Applying (16) we get:
c c . cP cos Y sin v
)‘4TE'C°S¢COS"I,+)‘5£51“¢] +)\6[ﬁmrci)s6 ]

ats Aty 1,
b

cp . % Ic,Blcos qf; sin v] =
+)\Slmr s1n41] +)\6 mr cos 9 +>\7-("f3.)

O B AR

max) ]
Note, first, that the \
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e

Now, factoring out a 3 and fi* yields, in the notation of ref. (8):

Bk -B k 3 0

where
c N 5 A 6 cos Y sin v
o< R ).
m()\4c05v~pc05v+r sin ¢ + ~cos © X7
Fork = k¥, p = p7; k(B - ") > 0
Ifk > 0, thenp > B*=>p = B an
Ifk < 0, then g < B =>p = 0
Thus, we have the engine on-off criteria.
For B = [3*, k = k:";
N A ¢ €OS y sin v *
— si > X\
)\4cos¢cosv+r sin ¢y + = cos 0 > 4cosmp cos v
A A
+ — siny" + 5 oo ¥ sin v*
r sin r cos O

ats

a.) =y ;v o= v%:v =y or v+mi=v)
Hence, (18) becomes

N, cos ¢y sin v

)\4cos¢cosv +

r cos 0

Using (12) and (13):

2

Ai r2 cosze + )\6

I\
o

CcoOs
b +D rcos 6
v

At
b3

(17a)

(17b)

(18)
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v

or,
+D

— >

cos r cos O 0

< 8 <—= , the above yields

Since r > 0, and

+ D, cosyy > 0
1%

- D, < 0
vcoqu

Physically, we will most probably be confined to

- 17 T
— < < = # D .
2 Y 2 * v

v*; Yoz q;k:; b =y or g + m(= LP*)

b.) v =
From (14) and (19):
1N 5 cos O
tan y = =D
v
N 5 cos ©O =D
sin :——:th , COS Y = D
Lp
where
29

From (18) again:

)\SSian

N, cos Yy sin v

A os co +
4 € Y s v -

Je]
Ui
\V)

+
r cos O

=

0

(20)



Substituting (12), (13), and (20) and clearing yields:

=D
r cos O =0
) Again, since r cos 6 > 0, this requires + D¢ (21)
C. There is a first integral, since the Lagrangian, ¥, does not
involve time explicitly.
. bF ) )\i(t) W, (zi, ZJ.)
5z ‘k - O 3 2 2 = C
7K “k
9 (z. - £ (z.)
N () 55—+ & =C
k
. Hence,
)\lr+)\26+)\3>¢+)\4p+)\5x+)\6y+)\7m=c (22)

D. Boundary Conditions

The boundary conditions to be applied come from two sources: Those
implied by the physics of the problem, and the remainder from the
transversality condition

T
. oF
dG+(F-8,F z ) dt + —— dz = 0, (23)
: 0z k 9z k
k k
0
' where G is the function to be minimized.

1.) To clarify the derivation of the boundary conditions, let us first
consider that the two orbits are coplanar. We reiterate the problem: Find
the minimum fuel path to transfer between two coplanar orbits by optimizing
the thrust direction (v) and duration ("'Bang-bang' control), The departure
and arrival points on the initial and final orbits are not specified, but the

. total time of transfer is specified, The geometry is shown in Figure 2.

*
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INITIAL ORBIT

TRANSFER
ORBIT

—» X,

FINAL ORBIT

FIG. 2. TRANSFER GEOMETRY
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Thus, we have a system of 10 first-order differential equations for
the variables:

r, ¢, p, ¥, m, )\1, )\3, )\4, )\6, )\7
This system thus requires 10 boundary conditions. The seven specified by the

physics of the problem are: (i = initial, f = final).

pi (or hi)’ e, (or Ei)’ w; s mi

. pg (or h)), e, (or EJ, w (24)

p, e, ware semi-latus rectum, eccentricity, and argument of perigee,
respectively. h and E are angular momentum and total energy.

We derive the three remaining conditions from Equation (23) and thus
. we are obliged finally to select the quantity to be optimized. Since we wish
to compare our results with minimum impulsive orbital transfer, let us
consider minimizing the characteristic velocity,

m,

G=c1r1-r—ni
f

Equation (23) becomes, uﬁlizing 22);

- C C
< . - A, d
[mf +x7] dmf+lmi x,,l dmi+[ Cdt + \, dr

A A
+\,dg +

dp + \, dy T .o (25)
4 6 0

-

1

Since m;

T
; is specified, dm; = 0. Also, dt] 0" 0, which implies C

unknown. Thus,
N, =— att =T (26)

2%

This is our eighth boundary condition. The remaining two come from

ay |* = o, (27)
0

[xldr+x3d¢+x dp + \

4 6
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where we use orbit equations to relate the differentials in terms of the given
parameters p, e, and w. To do this we note:

p =

¥ " 717%ecos (¢ - w) ~ £(9) (28)
dr = f'(¢) d¢
E/m = 1/2(%2 + rzq'sz) -ri (29)
d(E/m) = id£+¢2rdr+ rz{bd¢+-i2dr= 0 ‘
r
h/m = r°¢ (30)

d(h/m) = 2r é)dr + er é)': 0

Expressing all the differentials in terms of d¢, the two boundary conditions
then are

A 2N, ¢
, 4 2 u 6
f(¢) )\1 - 3+ (- r¢ + 2) -

T

r

These two equations can be put in a more revealing form. Substituti.ng p and
y from the equations of motion, we find

B Xésinv
r)\1+¢)\3+p')\4+y)\6=—m— —;—+)\4cosv att = 0, T

Utilizing Equation 17 from p. 9, with ¢ = 0 and X\ 5 = 0, we see that the
right side of the above equation is .

Bk + ﬁ)\,], or

i)\1+¢3)\3+§>\

1 4+y)\6+m)\ =Bkatt = 0, T (31)

7

This thus identifies the constant, C (Equation(22))as equal to Bk at the
end points.

Further, if C = 0 att = 0, (31) implies that k(0) = k(T).
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2,) We can now proceed to derive, rather succintly, the boundary
conditions for the three dimensional case. The problem requires fourteen
boundary conditions since there are fourteen first order differential
conditions for the variables:

X

r, e H ¢ ’ P ’ x’~ Y’ m) Kl’ Z, X3; X4, XS; Xéy x-?-

The physics of the problem now yields eleven conditions while the trans-
versality (Equation (23)) yields three, exactly as in the planar case. The
additional four physical constraints are that the vehicle's position and
velocity are to be in the specified initial and final planes.

We list the fourteen conditions in terms of their origin:

(a) From the final point (t = T), there are five: By choosing the final
plane to have zero inclination the two additional constraints at the final point
are simply ©(T) = 0 and é(T) = 0. The other three are Equations (28),

(29) and (30) applied to the final point,

(b) From the initial point (t = 0), there are six: One of the six is the
specification of initial mass, while five are orbit equations. The initial
orbital plane is taken to have an inclination i and to have its ascending node
on the x) axis as in Figure 2, The departure point angle called ¢] in
Figure 2 is replaced so that ¢ represents the angle in the X), Xp plane as
in Figure 1. The five orbital equations may be taken as: Equations (28),

(29), (30),

sin ¢ =tan @ cot i, (33)

and

2
yr2 cos 8 = % cos i, (34)

(c) From the transversality condition, there are three:

7

is obtained exactly as before. The remaining two equations are:

I\ I
[kldr+ Ay de + Ayde +r dp + Mg dx+ 6dy] coo

and

t =

i
(=]

[)‘1 dr + Mjdg¢ +Mgdp + Kédy]
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A, =S att=T (35)
m

=0 (36)

(37)



In addition it should be pointed out that just as in the planar case
Equation (36) and Equation (37) are equivalent to

B(0) k (0) =C (38)

B(T) k (T) = C (39)
Finally, for use in computation it must be indicated that equation (36)

along with the total differentials of the five orbit equations (28, 29, 30, 33, ‘

and 34) constitute a set of six homogenous equations, the determinant of

whose coefficients is the required relationship., This is the generalization of

Equation (3!) for the initial point. For the final point the generalization is

the same as in the planar problem.

E. Corner Conditions

The points at which the thrust goes on or off give rise to dis-
continuities in the z, . The mathematical criterion needed to join
different positions of the extremal arc is supplied by the Erdmann-
Weierstrass corner condition:

9F \ [oF ’
sz azk
- +

or
(xk) =(xk) , k= 1-7 (40)
- +
. 9F .
- F + aBF zk = -F + 52 zk
k - k + .
or, .,
C = c+ (41)
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We observe that any of the seven conditions which comprise (40) would
not apply if the value of the physical variable were specified at the dis-
continuity. Similarly, (41) would not apply if the time of the discontinuity
were specified.

F. Euler-Lagrange Equations
Here we write down the differential equations for the Lagrange

multipliers, which come from the Euler necessary condition in the calculus
of variations:

dt | 0z 0z

d oF oF
37 - = 0; zk=r, 0, ¢, p» x, y, m (42)
k k

F=\w, = xj () [zj - fj (z,)

i
5t
d i
< B
av ("j(t) 6jk.) s (z )
. o,
he TN P, () (43)

Using equations (4) -~ (10), equation (43) yields:

A
¢ 2 2 2 2p 5 cP sin Y
)\1—->\4Ix + y cos 6+3 —2[2px— - ]
r r
)\6 B cos ¢ sin v
c P cos ¢ sin
T2 [Zpy- m cos 0O l (44)
r
A. = - A (- 2ry°cos 0 sin 8) + \_y-cos 2 ©
» = - A (-2ry cos 8 sin gy cos
A 2 s 26+C13 cos  sin v tan 0 sec © (45)
- A X y sec o d
A =
3 0 (46)
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oo
4 x1+ " + - (47)
. Zhgp
)\5=-)\2-2rx)\4+'—r——2)\6ytan9 (48)
No= -\ 2ry A 20+ 2Ny cos 0sinB - 2\ tan 6 - 2| (49)
¢ = - My - 2ry A cos 5 Y sin 6 - ¢ |*ten --;]
cA_ sin c A\, cos { sin v
' -ﬁli 2 6
X7—m m>\4cosxpcosv+ — + T o5 0 (50)

or,
i\:ﬁ[k+>\],
7 m 7

from Section II-B-1,
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1II. ITERATIVE METHOD

The equations (4) - (10) and (44) - (50), plus the control equations for
the switching function, k, and the steering angles, { and v, are a set of
differential and algebraic equations whose boundary values att = 0 and
t = T must meet the specified conditions at those two points. We are thus
faced with the well-known two-point boundary value problem. The Newton-
Raphson method, and a '""Matrix Modification' technique were selected as
the first iterative techniques to attempt convergence of the two-point
boundary value problem. Both these methods are fully explained in
reference (2), and only a brief description of the convergence characteristics
of this method on this problem will be given here.

The iterative techniques have so far been only applied to the coplanar
case because it was felt that until a fast and reliable method was available
for that problem it was rather hopeless to tackle the three-dimensional
case. Reference (3) reported success with this technique for low-thrust
engines, but in this case when the thrust-to-weight ratio (T/W) is between
one and ten, it does not seem to be able to handle the problem. One
comment about a T/W of ten is in order; the iterative procedure begins
by. first obtaining the optimum two-impulse transfer. We then have the
optimum departure and arrival points, velocity increment necessary, time
for the transfer, and initial and final thrust direction. Hence, if we
assume an engine with a T/W = 10, we have almost an impulsive vehicle,
and if the final time is set equal to the impulsive time for transfer plus
the time necessary to burn fuel yielding a velocity increment equal to or
slightly greater than the impulsive solution, we can expect that the
finite -thrust solution will be very close to the impulsive solution in all
respects. Once this one has been obtained, we can then proceed to
decrease the T/W to 8, 6, 4, etc., obtaining solutions for all these, until

* we are down to precisely the engine in which we are interested.

Now, the Newton-Raphson method applied to the coplanar problem
has the behavior of converging on the transversality condition first,
equation (31), and then keeping that satisfied, move very slowly towards
meeting the orbit conditions, p, e, and w. The conclusion, so far, is
that the method is inadequate for this complex and sensitive problem.
However, several modifications of the method, and its use, are being
studied, and it may yet prove capable. If not, other iterative methods for
handling the two-point boundary value problem are being studied, and will
be tried if the Newton-Raphson proves conclusively unsatisfactory.
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NUMERICAL RESULTS

In the introduction to this paper, three reasons for turning to optimi-
zation procedures for the solution of the minimum fuel orbital transfer
problem werengiven. This section gives an indication of the answer to the
second statement; i.e., the comparison with two-impulse orbital transfer.
The answer is not conclusive since the switching function time history was
restricted to one coast period, and the second burn period was terminated

as soon as ’

k (t) = k (0) ; see equation (31).

Thus, a rather restricted class of initial and final orbits was considered;
all orbit pairs intersected, and in'most cases the intersection was quite
shallow,

The following table presents some of the results gathered from this
restricted comparison. The first column is the thrust-to-weight ratio at
the initial orbit; for example, a vehicle of 1000 slugs mass, with fuel-flow
rate, B, of 1 slug/sec., has a specific impulse of 300 sec. if the
(T/W)i = . 7118, at a distance of 6058 miles from the center of the earth.
In the second column, the percentage difference in velocity increment is
given; VF = ¢ In ™ | and Vi is equal to the total velocity increment

from the two-impulse minimization. Total A¢, in the third column was
computed as follows:

Total A¢ = ¢i’F‘¢i’Il + ’d’f»F -%51

Thus it represents the total deviation in the departure and arrival points
between this finite thrust solution—subscript F—and the impulsive solution—
subscript I. The last column gives an approximation to the penalty in
velocity increment, or fuel, if the departure and arrival point of the ‘
impulsive solution is used instead of the points specified by the finite thrust
solution. This estimate was obtained in the following way: Reference (1)
presents contour maps of minimum transfer velocity on a 4’1’ 4’f plot. By
differencing the value at (94,1, ¢+, 1) with the value at (¢;, p, 9¢, F), and
dividing by Vi, we obtain an estimate of the penalty in velocity, or fuel, that
would be incurred. We emphasize that this is an approximation; but in view
of the results in the second column, it is probably a reasonable one.

162




Finite Thrust Versus Two Impulse Comparison

(T/W)4 (—V-}“:-{;I—\-’I—) 102 Total Ad, deg. é-v‘-;- 102 Penalty
10 .086 20.0 .135
10 L136 26.3 . 410
8 .203 21.1 .352
8 .236 27.9 . 401
6 .143 18.7 . 365
6 .501 29.8 . 685
4 .278 34,4 .874
4 .354 32.2 . 247
2 .224 24.8 . 611
2 .293 28.7 . 631
.7118 .095 72.8 1.89
.7118 .194 13.0 . 407

We observe from the first and second columns, that if orbit transfers
with realistic vehicles are restricted to be completed in one orbit, then the
time constraint—obtained from the impulsive solution—placed upon these
finite thrust solutions is also realistic, and, ipso facto, the fuel requirement
for the transfer obtained from the two-impulse solution is a very good
estimate of that which would actually be needed. This is, of course, with
the assumption that the finite thrust transfer vehicle departs and arrives at
the proper point, for we see that the discrepancies in¢; and ¢ ; can be quite
sizable. However, from the fourth column, we note that the penalty in fuel,
or velocity, for using the optimum ¢i, ¢f from the impulsive solution rather
than those specified by the finite thrust solution may be quite minor; however,
this was a rather restricted comparison, and a good deal more numerical
results are necessary before any even tentative generalizations in this
direction are possible.
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CONCLUDING REMARKS

The Mayer formulation of the calculus of variations has been used to

derive, in three dimensions, the equations and boundary conditions necessary

to determine the minimum fuel orbit transfer path by optimizing the thrust
direction and duration, and the departure and arrival points on the initial

and final orbits, The closed-form solution to the Euler-Lagrange equations,
which apply along the coast arc has also been derived, rather explicitly, and

has been verified by some of the numerical integrations indicated in the
preceding section,

The numerical results section is considerably leaner than desired.
One conclusion, therefore, is that the multivariable Newton-Raphson
iteration technique is inadequate for this complex and sensitive problem.
This is a useful, albeit frustrating result. A more gratifying result is the
favorable comparison of two-impulse and finite thrust orbit transfer
solutions. Restrictive as it is, it should be of interest to design personnel,
for it is the first proven indication, to this writer's knowledge, of the real
utility of the impulsive solution and how much a design based on it differs
from the optimum.

It is hoped, and rather optimistically felt, that one of the iteration
techniques currently under study for solving the two-point boundary value -
problem will be effective in this endeavor. With this accomplished, an
unrestricted variety of problems with an equally unrestricted genus of
propulsion systems will be able to be expediently solved. The two-impulse
solution is obviously not universally a good estimate for design, or even
applicable, When low-thrust ion or nuclear propulsion systems are being
considered, and interplanetary transfers are being studied, it will be
distinctly advantageous, if not imperative, that the capability begun herein
be a reality.

164




APPENDIX A

SOLUTION TO EULER-LAGRANGE EQUATIONS DURING COAST

With the thrust off (3 = 0), the equations of motion are

o= rpd --i%- (Al)
Ir

r$ = -2 i (A2)

for coplanar orbits. The solution to these involves four arbitrary constants;
Pcs €.s W the elements of the coast orbit - and ¢., the angle at which the
coast is begun.

. The Euler-Lagrange equations are:
) zx6¢
. = - A
Ny N +HTE (A3)
zxéi
)\6:—)\3—2)\4r¢+ = (A4)
N —ulwc-x d -\ ,T -\ ¢ (A5)
1 T F 3 NG E ]
5\7 = 0; )\7 = N\ _ at beginning
of coast (A6)
. First, change the independent variable from t to ¢:
~® 2\ 6¢
.
= - A
MNyo MtTT (AT)
»* ! . . 21:
)\6¢ = —x3-2r¢x4+—;x6 (A8)
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Putting (A5) in (A7), and collecting terms, yields

. . . . 2i~¢ )

- - - =2 = 0 A
)\4¢r )\4r )\3¢+C )\6<r+¢> (A9)
The solution to (Al) and (A2) is given by

2 -

r’¢ = h = up,
Pe
t " l+e cos(og-w)
c ¢ C
We find r by
rZ hec
T o= quSeC 51n(¢>—wc) = b, 51n(¢-wc)

From (A2), 2:¢ + ¢ = 0; thus (A9) becomes

‘ 4
N .2 E (A10)
4 or T or
Defining true anomaly as 6 = - w,, and using 6 as the independent

variable, we get upon substituting the equations of motion solution:

ax N P 3
4—)\ cot® = 3 - Cp (A1)

i 2 2
de 4 hesin® e sin B8 [1 + e cos 0]

where the subscript ¢ is now omitted.
Substituting the orbit solution in equation (A8) we get

. 2
d)\é_)\62e51n9_ -\, P 2p>\4(9) (A12)
- B 0
de l + ecos 9 h[l +ecose]2 l+ecos

>SWe note the singularity in this equation at & = 0, m, and that the limit
approaches + won opposite sides of the singularity; the handling of this is
discussed below.
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W e obtain the solution to (All) first. The homogeneous equation is

dX
f )\4= fcotede
4

)\4 = Kl sin O (A13)

Applying variation of constants, we insert (Al3) into (All), letting Ky =

‘ Kl (0).

C C
1 2
K () = -
1 . . 2
sin” @ sin” 8 [1 + e cos 8]
X_p 3
- 3 - Cp
. where C1 = e C2 =
h e
[ 4
K, (6) = -G cot0+C,-C, [ d6 (A14)
1 1 3 2 2

. 2
sin” 8 [1 + e cos 6]

. 2
Lettingu = [1 + ecos®] 7, dv = csc ©d6, we get

-2
]udv = -cot®[1+ ecos 6] +2ef cosed;a
[1+ecos@]

Using ref. (10), we find

‘ cos 6d6 e sin 0 [-2 e + cos 6] d 6
Ze[ = +[ >

2
[1 + e cos 9]3 (1 - ez) (1 + e cos 6) [1 + e cos 8]

et

Multiple use of #317 and #309 in ref. (10) yields

1
. f de 1 -e sin © 2 -1 1 - e2 tan?2 6

2 2 + 7 tan 1 +e
(1 + e cos 0) (1 -e’) 1 + ecos © N1 -e

where -m <8 <mwand 0 < e <1 - elliptical transfer orbits only.
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Again, using #315 and #309 we obtain

cos 6d ©
J >
(1 + e cos 0)

Collecting terms we get:

-2
5 d o 2=—cot9[1+ec056]
sin” © [l +e cos 6]
N e sin 6 2 e - e sin 6
2 2 - 2 +
(1 -e“) |1 +ecos 0) (1 -e) |l tecos?

/ 2
2 -1 1 -e tanl1/2 6 1 sin O
+ —F/—————= tan +

/ 2 1 + e 2 1 +ecos 6
1 -e 1 -e

v 2

2 e -1 1 -e tan1/2 6 -

- —F/——— tan + C =L + C
'/l—ez 1] + e : 4

Kl (0) = —'C1 cot 6 + C3 - C2 <— cot ® [1 + e cos 8]
+ e sin © Z+ 251n6 [2e2+1]
1 -e (1 + e cos 0) (1 -e ) (1 +ecos 0)

6 e -1
ez 3/ 2 tan (ARG)] + C4>

(1 -e)

Defining the constant C3 - C2 C4 = '121 ,» we have:




)\4(9) = -C1 cos 6 + 121 sin 6 -'C2 sin 6 (- cot 8[1 + e cos 8]
’,

2
. . 2
4 e sin 0 sin 8(2e +1)
2 2
.. 1 -e (1 + e cos 0) (1 -e )(1 +ecos 6)
- 6 e tan” " (ARG)]) (A15)
2.3/2
(1 -e)

where

Vi Zt 6/2

ARG = —.£._an ,
1 +e

and R-l

is determined such that )\4 (¢C - wc) = )\4 (GC) is satisfied.

Turning now to equation (Al12), we have for the homogeneous solution:

A, = K_ (1 e)'2
6— 2 + e cos

Using the form (Al4) for K; (0) in the equation for A4 (0), substituting the

homogeneous solution for Ag (6), above, into (A12) and considering that
K, = Kj (6), yields the differential equation for K, (8):

1 -2 ! -2 -
KZ(B)[1+ecosB] -C1[1+ecose] -Zp[1+ecos9]1

-C

2
\;P
d -3
1cos(—)+C3sin6-Czsin6 > 6 2;C1=h
sin. ©[1 + e cos 0]
@ s
-t 1 i
K2(9)=-C1-2p[l+ecose] -C1c0s6+C3sin9

Py

. d 6
—C251n6f ]

2
sin” 8 [1 + e cos 0]
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Now:
f[-Cl-Zp[1+ecose] <—Clcose+C3sin6)] d e

e C e C

> sin 6 cos O - >

2
= Zp(C1 sin6+C3cose+ sin 6)+C5 (A16)

Finally, we need:

chzfsin9[1+ecos9] <f > d9 ]2>d6 (Al?)'

sin 0[1 +e cos 6

Let:
d
u = > 0 ; dv = sin 8[1 + e cos 6] d 8
i + 2
sin” 0 [1 + e cos 0] v :—cose+%sin 0

2
[- cos 8 + e/2 sin 0]
[udv uv - j > >
sin. 0[1 + e cos 6]

cos 6d © e d 6

udv uv + - =

. 2 2 2 2
sin 8[1 + e cos 6] 1 +ecos 6

de

For the first integral let

[

y = ecos 6
dy = - e sin 6d 6
e S5 ‘ ,/ez_yz
o e -y sin 6 = .
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cos 0d 6 _ ydy
ef 2 2

s 2 2 2
sin” 0 [1 + e cos 6] [1+y] (e - )3/2
Now, let
"
z =1+y;
2
yz =z -2z +1
Then:
cos 6d © _ e[(z-l)dz
> - - B Sl o
sin B8[1 + e cos 0] z2 Z?)/2
where
> .
v Z = -~z +Zz+e2-1.
‘ z =1+ e cos O
. Using reference (10), #190 and #197:
. j’ cos 6d 6 B e[ dz + e [___dz
2 2 2 2
sin29[1+ecos 6] zZ3/ z_Z3/
_ e -1 1+-—1—+ 3 d =z 1+ 3
" z 2 B 2 2
(ez-l) Zl/2 e -1 zZl/ (e -1)

d z 1
+ 3 f 3/2 <1+ > > +C6
VA e
' where

. 2
- j dz a 1 sin-l <z+(e - l)>
- 2
2z Ve “°

ot and

f dz z -1
Z3/.2 e2.2‘1/2



Thus, from previous results in )\4(6) and collecting the above, we find:

. e 1 - e sin ©
= ) + (A R
K,(8) = (A16) + 2p C, (uv+ (A18) - — | T
(1 -e)
Vv 2
+——2‘ta -1 1 -e tan9/2+c]> (A19)
n
N 2 1 +
1 - e e 7
where u and v are defined below equation (A17).
Collecting terms, we get: .
> e C
>\6(9):[1+ecos 0] [K2+Zp(c1 s1n6+C3cose+ > sin 0 cos ©
e C
3 .2 e . 2
+ 5 sin 6) +2pC, <[L+C4] [—cos6+251n 9]

, —e 1 a1y 3 d z Ly 3
2 - 2 2 - 2 2
(e -1) Zl/ 2 e zZl/ e -1
+3fdz_1+ 1 ,_-e < e sin 0

2 T 1+
Z3/2 ez-l 2 (1 - &%) 1 e cos O

2 -1
+ ———,-l——e-z tan (ARG)>>] (A20)

We note that the constants C3 and C4 appear explicitly in (A20). To
eliminate this, we consider all terms containing them, namely:

*4

eCs e . 2
2p<C3cos6— > sin e>+2pCZC4(-cos 9+7sm 0)

2 2
= C3(chose-pesin 6)—C2C4(2pcos ® - pe sin 0)

2
= Klp(Zcose-esin 0),

where I_<—1 is the constant we determine from the initial conditions on )\4(6).
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.

»?

e cos 9)

-2 [=
A = i
6(9) [1+ e cos 0] [K2+2pC151n0(1+ >

- 2
+ Klp(Zcose—esin 6)+2pCZ L(-cos 9+%sin2 6)

e 1 <1+1+ 3 jdz Ly 3
2 - 2 Zz 2 -
e” -1 21/ P | . 2?2 FCI
dz 1 - e - e sin O
+3[ <1+ + < —
2 2
Z3/ o >] 2(1 - eZ) 1 +ecos ©

-1
N 2_ . -1 V1 - e tan 0/2
/——-1 2 n 1+e (A21)

We note that equation (Al11) has a singularity at € = Oor v (¢ = w _or
o = w_ + w). If it is necessary to evaluate X4 across either of these points,
we have, from the first integral (A5), a solution.

. . _P
"7 1zxe
lim r=0
2
— . e +
P —~w, 5 = > (1 £e)
P
¢—’wc o ¢ =0
2
o _tep (1 £e)
r = >
L. p
where the upper sign is used for ¢ — w_ (6 = 0), and the lower for

¢—>wc+1r(6=1r).

We thus find, from (A5):
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_C -3¢

lim
0—>O T
0 —m
lim )
§—0 » __ Cp _Msh
47 ¢ p(l + e) ep (A22)

Rewrite

We can derive (A22) in a different, and more fruitful manner.

equation (All) as:
dAg 1 A3P Cp3
T S A, cos@ t e -
@ ~ sinf 4 e hie [1+ecos€] 2

Since we require continuity of the multipliers, the bracketed quantity must

approach zero just as sinf does as § —0. Solving, then, for A4 at @ =0,

gives:
CpZ X3h

Ay = ep(l+e)d  ep

Thus, we know that

lim

§—0 dk4_’g
g—m dé 0

We can thus use L'Hospital's Ruleand derive two approximate
In the neighborhood of @ = 0,

differential equations for A4 ().

dAy 2 Cplh
— 2o ng - =P
dé 4 p(l te)

In the neighborhood of § =,

dhg _ 2 Cp® (9 -m)
o = M0 -m -2
Solying these two equations, we obtain:

2 Cp® — 2
Ay (0) = -ﬁ—f—e—)g“f K3 exp [-—
0 ~0 .

S 2Cpf(f-m) 8
0 S (o[£
~mn
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We can similarly approximate (Al2), and obtain

2
_ 9 2e Y@ l+e [_ Asp 4Cp3 ]
16(0)'exP< 1+e>[ zerfw)(\/_e"' h(1+e)?  w(l+e)

0~o0

2p K3 2 (1 + =
_2p K3 jz(l+e)) ¥,
1+ e 1 + 3e

where erf (@) is the error function, or probability integral:

9 2
-u
erf (0) :\/—é_ je du
0
2e @ 0 A 3p%g Ald’
Ao (0) = exp \T ¢ ["'E‘] “h(l el eP\— 2
9 ~m
A.w 3 :
1 Cp 0
[1 5 (0-1!’)] + ep(l - e)3 exp <A10 [" -T])‘

— 2
0 Ay m AT -
.Zf#_exp< 22 ) [1+-—2(0-1r) +K6]

e
where
A_-Ze
17 1-e
A _l-3e
27 1-~-e

Since we do not have the switching function, k, as an explicit function
of 0, some iterative method is needed to find the first 0 at which k crosses
from negative to positive values. Simply using two points and a slope to find
a parabola for extrapolation works quite well. Writing k as:

where
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and

d
— =0
d e
we find
d N, dAX A% e sin 6
dk ¢ N 4.6 6 6
de mD |L""de " Tdoe P
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Summary ‘

A study has been made of minimum-fuel transfer and rendezvous -
between neighboring low-eccentricity orbits by power-limited rocket.
This study includes and extends previous work wherein only the case of
transfer between circular orbits was considered. As before, the
analysis is based on the assumption that only small deviations from an
initial orbit are allowed. Complete analytical solutions are obtained
in three different sets of variables: (1) rotating rectangular coordinates,
(2) rotating spherical coordinates, and (3) Legrange's planetary
variables. In addition to the determination of optimal transfer and
rendezvous trajectories in three dimensions, synthesis of the optimal
controls is also carried out in each case. The guidance coefficients
resulting from the control synthesis are presented both in graphical form
and in equation form suitable for use in guidance applications. .

Introduction

It is characteristic of high-specific-impulse, low-thrust pro-
pulsion systems that the source of power is separate from the thrust Te
device itself. Consequently, such propulsion systems are referred to
as power-limited, since thrust is restricted in magnitude by the output
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of the power supply, which is in turn limited by the necessity of
minimizing power supply weight.

The problem of transfer and rendezvous between neighboring orbits
by a power-limited rocket is of interest for two basic reasons. First
of all, the problem can be solved analytically, as was demonstrated in
Refs. 1 and 2, provided that the thrust acceleration is not constrained
in magnitude and that the proper simplifying assumptions are made in the
mathematical model of the system. The analytic expressions thus obtained
for the controls and for the optimum trajectories then provide insight
into more general problems where the simplifying restrictions are lifted.
Secondly, the solution to this problem provides a lower bound to the
performance requirements for low-thrust orbital transfer and rendezvous.

It is interesting to note that if, for the same system model as has
been used herein, the thrust acceleration is assumed constant, analytic
integration of the equations of motion requires the evaluation of
incomplete elliptic integrals of the third kind (Ref. 3). Therefore
allowance for variable-thrust acceleration is essential if simple analytic
solutions are to be obtained.

Analytical Method

Description of the Mathematical Model

The phrase "neighboring orbits," as defined here, requires that the
inclination between orbit planes be small and that the radial separation
between orbits be small relative to the semi-major axis of either orbit.
If it is further assumed that motion in the transfer orbit does not
deviate significantly from these neighboring orbits, linearization of
the equations of motion is permissible.

The analysis has been carried out in three sets of variables:
(1) rotating rectangular coordinates, (2) rotating spherical coordinates
and, {3) Lagrange's planetary variables. The rotating coordinates have
been utilized previously in Refs. h, 5, 6 , while the planetary
variables were applied to an orbit transfer problem in Ref. 3.

The rotating coordinate systems are depicted in Figs. 1 and 2.
Each consists of an origin which revolves at satellite velocity in the
initial (interior) circular orbit and orthogonal coordinates measured
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from this revolving origin. In the rectangular system of Fig. 1, y!

is a radial dimension, x' is measured tangent to the initial orbit at '
the origin, and z' is a coordinate which is out of the plane of the

initial orbit and is normal to both x' and y'.

In Fig. 2, the spherical system is composed of a radial coordinate -
y, an arc x, measured circumferentially from the origin, and another
arc z, which is orthogonal to the x-y plane.

The lagrange planetary variables, which are derived from the
elements of an elliptic orbit and are used in the standard variation
of parameters equations of celestial mechanics (Ref. "(), are convenient .
because they eliminate the necessity of treating singularities for
zero eccentricity and zero inclination in these equations. As they are
used in this study, the planetary variables consist of the non-
dimensionalized semi-major axis X; = a/ao, a circumferential distance
component, X, , and the following combinations of the remaining
orbital elements:

X = e sin w -
Xs = € COosS & (1)

X5 = sin 1 sin Q

X = sin i cos Q .

where e is eccentricity, w is the longitude of peri-apsis, 1 is orbital
inclination,and Q is the longitude of the ascending node. The planetary
variables provide a simple means of introducing eccentricity into the
terminal orbits, and the form of the state equations using these variables
is particularly simple in the present problem. However, in a practical
application, they might be less desirable than the rotating coordinates
because the orbital elements cannot be directly measured.

In view of the foregoing considerations, eccentric terminal orbits
have been allowed only in the planetary variasbles in this study, while

the analysis in rotating reference frames is confined to circular ’
terminal orbits.

It should be noted here that the three sets of variables are
entirely equivalent in that the equations of motion may be transformed
directly from one set to another by substitution. There are some
differences in the required linearizing assumptions which should be a
mentioned, however. '

182




Consider the coordinate system depicted in Fig. 1, a rectangular
system with its origin fixed on the interior orbit (assumed to be the
reference orbit) in the x', y' plane. The mutually orthogonal coordi-
nates x', y', 2' form a triad that revolves with angular speed ng
characteristic of the reference orbit, so that motion in this frame
of reference is relative to a point on the reference orbit. The
spherical coordinate system in Fig. 2 is described by the arc x in the
plane of the reference orbit, the arc z measured normal to this plane,
and a radial dimension y.

In order to linearize the equations of motion in the first system,
it is necessary to assume that excursions x', y', z' from the origin be
small in comparison with the radius, ro, of the reference orbit. Motion
is therefore constrained to a small sphere about the origin. XNo
restrictions are placed on the component velocities. In the rotating
spherical system, only the assumption of small component velocities
will linearize the equations, whereas the arc x is not limited. The
resultant motion is constrained to a torus about the reference orbit.

Since the linearized equations of motion are identical except for
differences in notation (Ref. 4), one can draw the conclusion that, if
in the spherical system the resultant motion does not involve large
variations in x, the velocity components may be large. In the present
study, use of the spherical system has been assumed throughout,and the
results may be extended according to the foregoing discussion.

In the case of the planetary variables, the linearizing assumptions
require that the difference in the semi-major axes of the terminal orbits
be small and that the eccentricity of the terminal orbits as well the
eccentricity of the instantaneous transfer orbit be small. The
implications of these assumptions are similar to those for the rotating
spherical system, in that "fast" trajectories are allowed only when the
linearizing assumptions may be relaxed. On the other hand, fast
trajectories are allowed in the rectangular system because no limits
are placed on the component velocities in the linearizing process.

Analysis

The optimization problem is to derive the optimal control equation
for the minimum-fuel transfer or rendezvous of a power-limited rocket
between neighboring orbits in a given time. Mathematically, this
requires minimization of the integral
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Tf - T!‘
7= [ (T/m)ats [ (no/2) A%ar = [ “go(a)ar (2)

subject to constraints Imposed by the equations of state which may be
expressed in the form

x =f; (x, A) i=1,...,n (3)

The contrel is the thrust acceleration vector, A, in the present case.

The problem is treated as a problem of Lagrange in the calculus of
variations. In particular, Breakwell's formulation (Ref. 8) of this
problem is used because the linearized equations in the present case are
particularly well suited to this formulation.

If a fundamental function F is defined as
n
F = -fo + = )\ifi ()"")
i=]1

the variational treatment requires satisfaction of Euler-Lagrange

equations in the following form as necessary conditions for the
existence of an extremal arc:

d\y _OF

ar 7oy (5)
AF

>, = ° (6)

An additional necessary condition provided by the Pontryagin Maximum
Principle must also be satisfied to insure that the stationary solution
predicted by the Buler equations is actually an extremum. The maximum
principle, which may be expressed as

F(x,, Ay, &) =F (x, Ay, Ay) (7)

ensures that the stationary solution is an absolute maximum. Further-
more, it has been shown (Ref. 9) that for a system where both the state
variables and the controls appear linearly in the state equations, the
maximum principle is also sufficient to ensure a minimum of the payoff,
J. Since all cases in the present analyses are linear in the controls
and satisfy the maximum principle, the optimum trajectories described
herein are absolute extrema.
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Due to the great number of equations involved, the variational
analysis is not described in each case. Only the most important
equations are included, and these are grouped in an orderly fashion in
the appendices. The rotating coordinate systems are considered in
Appendix I,and the planetary variables are considered in Appendix II.
For a more detailed account of the application of the aforementioned
equations the reader is referred to Ref. 1 wherein a specific case is
treated in detail.

Synthesis of the Optimum Controls

In order to put the equations for the optimized controls into a
form compatible with guidance regquirements, several changes are made.
First, 7 in the control equations is replaced by -T1. That is, the
equations are rewritten with "time-to-go'" as the independent variable.
Secondly, while in the ordinary transfer and rendezvous analyses in '
rotating coordinates it was generally convenient to assume zero initial
conditions, the terminals are reversed in the control synthesis. That
is, the target orbit is assumed to be defined by zero values in most of
the state variables. The results of the control synthesis are expressed
in terms of the guidance coefficients,aAJ/axi, of each component of the
control vector, A.

The equations for the control synthesis are summarized in Appendix
III, for transfer and rendezvous in each of the coordinate systems.
Those equations which deal specifically with transfer between circular
orbits have been presented previously in Ref. 2.

Results

Orbit Transfer and Rendezvous

The multiplicity of solutions generated in this study (particularly
for rendezvous) precludes a graphical presentation of all the resulting
trajectories. An attempt is made to summarize the results in a reasonably
concise form with orbit transfer solutions represented as special cases
of rendezvous wherever feasible.

To simplify the presentation of the results, only circle-to-circle
transfer and rendezvous cases are examined in the summary curves of
Figs. 3 through 12. The first set of plots, Figs. 3 through 5, shows
the variation of the components of the optimal thrust acceleration with
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time for cirecle-to-circle transfer only.

The in-plane components Ax/yf and Ay/yr are seen to display symmetry
about the midpoint in time for all trip times, as does the out-of-plane
component A,/roi. In particular, when T, = 2n7, the components Ax/yf
and Ay/yf are constant with time, and the latter is zero. For the
coplanar problem, constant circumferential thrust acceleration is there-
by specified as the optimum mode for integral multiples of the period
of the reference orbit, a result that is in agreement with Ref. 6.

Figures 6 through 8 show the thrust acceleration components for
circle-to-circle rendezvous at a particular trip time equal to one ‘
sixth of an orbital period of the reference orbit. The parameter
in Figs. 6 and T is %, /y, T, which takes on the value 3/4 for the
special case of optimum transfer. Similarly the out-of-plane component
is plotted with Q, as a parameter. As indicated, the longitude of
the node can have either of two values, 150 or 330 deg, for optimum
transfer. ’

The payoff, J, can be best represented as the sum of three
components, Jy, Jz, and Jz, which are defined by Egs. A-Ll and A-L45
and are plotted in Figs. 9 through 11. The components J, and Jp
define propellant requirements for coplanar rendezvous, while the
addition of J; introduces the out-of-plane requirement. In particular
J is equal to J, for coplanar transfer since the term x,/y,T,- 3/4 in
J; is zero for optimum transfer.

A1l three components, as well as their sum, are seen to be
monotonically decreasing functions of T,. In the limit, as T, = «, A
and J » 0. This is a consequence of the fact that no limit has been
placed on exhaust velocity. Similarly all three components tend to
infinity as T, approaches zero because zero trip time requires infinite
thrust acceleration.

An interesting feature of Js is evident from Fig. 11. For 7, = km .
where k =0, 1, 2, ..., J3 1s the same for all nodal longitudes, (.
For all other times the envelope of the family of curves is given by the .
equations
1
Japax = T, - lsin Tfl (8) A
Japin = = (9)

Ty T |8In Typ |
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where the lower envelope is given by Eq. 9 and represents Jz for
optimum transfer.

Application to Planetary Orbits

Strictly speaking, none of the planetary orbits are "neighboring
orbits" in the sense in which this term has been defined. Earth's
closest neighbor, Venus, has a semi-major axis, a = 0.7233 AU, compared
with a = 1.0 AU for earth, leaving a separation distance of 0.2767 AU
which is not << 1.0 AU. However, it is possible to apply the linearized
analysis to earth-Venus trajectories with remarkably good accuracy.

In Fig. 12 a comparison has been made with the exact solutions of Ref.

10 , for earth-Venus transfers. The circled points were calculated
from Eq. A-43 of Appendix I. These results for the special case of
uninclined circular terminal orbits show only a slight discrepancy in
J for transfer times up to one earth year.

To obtain the circled points in Fig. 12 a reference orbit mid-way
between the two terminal orbits was selected, i.e., a = 0.8617 AU. This
improves the accuracy of the results over what could be obtained by
re ferencing the coordinates to the major axis of either terminal orbit.

These results are encouraging and tend to support the view that
an extension of the linearized analysis may be adequate for transfer
and rendezvous between the orbits of earth and the nearby planets.
Such an extension need not even be an exact second-order solution but
might include only the dominant second-order terms in the equations of
motion. This possibility is currently being explored by inclusion of
the second-order terms in the radial motion.

Control Synthesis

In this study it has been possible to express each of the components
of the optimal control vector, A, as a linear function of the n state
variables.

Ay = % Eﬁi Xy

i=1 ax (10)
Therefore the presentation of the results can be confined to curves of
the guidance coefficients, BAJ/BXI plotted against time to go, T'.
Using the equations for the guidance coefficients which comprise
Appendix III, the summary curves of Figs. 13 through 24 were generated.
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The synthesized controls for the case of transfer between an
arbitrary state and a nearby circular orbit appear in Figs. 13 through
15 in terms of the rotating coordinate system variables. The extension
to include eccentricity of the final orbit is provided by use of the
Lagrange planetary variables in Figs. 16 through 18.

For rendezvous the same procedure is followed in the presentation
of the synthesized controls, with the addition of curves to account for
the dependence of in-plane thrust acceleration components on the
circumferential distance. In rotating coordinates, Figs. 19 through 21
summarize the results for rendezvous between any initial state and a
point on a nearby circular orbit.

Ag in the transfer case, the planetary variables facilitate the
extension to rendezvous between an initial state and a point on a nearby
orbit of low eccentricity. The results for the planetary variables
appear in Figs. 22 through 2k.

All the curves for the guidance coefficients display similar behavior.
When time-to-go is short, the curves diverge to infinity, (either positive
or negative), but a damped oscillation is evident, causing the coefficients
t o approach zero for very long times.
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Nomenclature

T Thrust-to-mass ratio
m
A 1T
n, nm
C Integration constant
f Rate of change of a state variable
F Fundamental function
J Defined by Eq. 2
D Defined by Eq. A-146
B Defined by Eq. A-1T7h
Q Defined by Eg. A-1T73
$ Defined by Eq A-138
A Lagrange multiplier
r Radius
R Radial force
w Normal force
S Circumferential force
n Mean angular motion
X,¥,% Position components in spherical system
x‘;y',z' Position components in rectangular system
u,v,w Velocity components in x, y, 2z, directions
t Time
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Subscripts

i

X,¥,2,u,v,w

Nomenclature (Contd.

npt

Time to go

True ancmaly

Longitude of ‘peri-apsis
Eccentricity

Unit vector normal to instantaneous transfer orbit
Semi-ms jor axis
Longitude of the node
Inclination

a/8o

e sin w

e cos w

sin 1 sin Q

sin 1 cos Q

Angular momentum vector

Index denoting x,y,z,u,v,w
Index denoting x,y,z
Initial condition

Final condition

Denoting state variable
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Superscripts

*
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Nomenclature (Contd.

Radial
Circumferential

Normal

Optimum condition

Denotes a vector
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Appendix I

Rotating Rectangular and Spherical Coordinate Systems

1. Equations of State

dx
dr (A-1)
dy
ar © VY (A-2)
dz  _
() o c W (A-3)
% = A+ 2y (A-4)
dv _
a7 = Ayt 3y - 2u (A-5)
dw _
. F = Az 4 (A-6)
‘ 2. Euler-lagrange Equations
Moo= 0 (A-T)
Ay =73, (A-8)
Ao F A (A-9)
Xy = — A+ 2N, (A-10)
o = =N~ 2N (A-11)
. XW = _>\Z (A—l2)
. Moo T Mo (A-13)
)\v = noAy (A-l)"-)
A T NoA; (A-15)

*
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3. Integrated Buler-lagrange Equations

A = neGCo (A-16)
Ay = —6no(Cq + Cot —Cjcost + Cpsint ) " (A-1T)
Xz = 2no( Cgsint + C5cosT) (A-18)
Ay = Ng (3Ca+ 3CoT — 4C, cosT + 4C,sint) (A-19)
Ay = 2no(Co+ C,sint + C,cost) (A-20)
Aw = 2ng(Cgcost = Cgz sint) (A-21)

4, Boundary Conditions

Transfer Rendezvous
State Variable =0 ‘T =T T =0 T =T
X 0 FREE 0 X5
y 0 V¢ 0 Y¢
z O Zg o) Z
3 () 3 )
u ) = Y 0 > Vs
v 0 0] 0 0
W 0 2.2 2 (2) 0

e 2(2)
Ao | — 2%

"o i —Z¢

5. Integrated Equations of State -(with initial conditions)

*
1"

2
+ [223inr — |OtcosT —IZT]CZ—[% % - I2(I—cosr)]C4

[ i6(t — sint ) - ATB]CO + [|6(l—cosr) - 107 sim—]Cl (A-22)

[B(I—cosr)—3r2]Co+ 5[sinr - rcosr]C, + [Srsinr —8(|—cosr)]C2

y =
A-2
+ G[Sinr—t]c4 (A-23)
z = [r cosT - sinr]C3 + [r sinr] Cs (A-2k)
(1) REF ©
{2y REF 5
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[lG(I—cosr)— —2— rz]Co +[65inr— |OTCOST] C (A-25)

+ [lOr sint —12(1 - cosr)]C2 + [IZ sinT — Qr] C,

[85inr—6r] Co + [51— sinr] C, + [ 5T cosT - 3sinr]C2

+ 3‘[1 - cosr] C, (A-26)

[—r sinr] Cs + [sinr + T cos T}C5 (A-27)

6. Transversality Conditions - Transfer

T. Constants of Integration

Transfer

A, =C, =0 (A-28)
Wt
Cs ) tant, + Z (A-29)
Cs I = 7:— tantg
sinT
c, * AU (A-30)
16(1-costg) — 5 (57 + 3sinty)
—ye (1 —costy)
Ce = . —r (A-31)
I6(1-costy) — (57, + 3sing)
(sinty + TcosTy ) z; — (TgsinTg )/ ro2 i2- 22 (A-32)
Cs = 2 .2
7,5~ sin‘7g
%(51f+ 3sintg )
Cq = . (A-33)
4 16 (1 — costy) - 5( 515 + 3sing)
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Rendezvous

X 3 oz
T yf(—y-f—f_r—f - T) (5Tf 3SIan) (A 3)4)
C, = - -
o]
%rf (57— 3sint)(5;2 —80) + 4(1 - cosy ) 7ir—64) + 2487 costy
sint _3sinr — 8(l-cost)
C, = aRAi — + G LT (A-35)
16 (1~ costy) — T4( 57 + 3sintg ) S5t¢ — 3sintg
-y, (I —cost,) —3T(|+COST)—83inT
C, = i LA + G| — LA | (A-36)
2 16(1 - costy) — 74( 514 + 3sinty) i 5ty — 3sintg
(sinty + 7ycos ) 2z — (Tgsin ) r(,zi2 —zfz (A-37)
Cs = - 2 =37
(t;° — sin rf)
Ys .
& (57t 3sing)

C, = - ¢, =+ (£-38)
16(1 —costg) — 7 (57 + 3sinty) 2

(gsint)zg + (Heos Ty — sinTy) /ry"i° — 24 - (A-39)
Cs = 2 .2
(t¢ — sin"7g)

8. Controls

Ay = 3C4+ 3Cyt — 4C,cost + 4C,sintT (A-40)
Ay = 2 [Co + C, sint + C, cosT ] (A-k41)
A, = 2 [Cs cost - Cy sinr] (A-h2)
9. Payoff
Transfer )
- Y¢ . .2
— ) (5%+ 3sing)
J - (7g) (5wt 3sing o (a-b3)
INE s[rf(srf+ 3sint;) — 16 (1 —cosrf)] T +lsintyl
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Rendezvous

J Yo 12 Vel % 3\?
.. = () + U (=E ( ——) + Jail AL
oo’ { o ) 2 ‘o ) e 4 3 ( )

(# )2(5Tf + 3sint,)
o]

_J .
no3"02 8 [rf (5t + 3sing) - I16(1 - cosrf)]
2 2 2
o Ty (M 3 _ 3
. 5 ( ‘. ) ( = 4) (5% — 3sinty)
% 5 (57 — 3sint )(sz— 80) + 4(1 — cosrf)(7lrf2—64) + 2487f2 COST¢
4 2 [ 7 — sint; cos ( 280 74) ] (A-b5)

2 _ .
(t — smzrf)

10. It should be pointed out that for each free end condition in the
case of orbit transfer, the variational analysis predicts an optimum
value for that particular state variable at the end point. In the
rotating coordinate systems the x and z coordinates are left open at
final time, 7, . The end point for the optimal transfer is then
determined in the analysis and is defined by the equations.

Z, \* |+ cosT,
(%) RISk (A-16)

X¢ * 3
(55) = =+ (A-47)
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Appendix II
Lagrange's Variables

In the theory of special perturbations, as derived in Ref. T for
example, the equations for rates of change of the elements of an elliptic
orbit are written in terms of the elements and acceleration components
S, R, and W, which are perpendicular to the radius vector, radial and
normal to the orbital plane, respectively.

Consider the five elements a, e, i,w ,80 . The equations for

small rates of change of these variasbles are ‘
da 2 . .
= —==— | eRsinp + S(I+ ecosm) (A-48)
dt Vs [ K i ]
2
de J —e? ) 2cosm + e + ecos M
== = I—— | Rsinm + S -
! no [ " | + e cosm ] (A-k9)
i _  Jl1-¢e? (A-50) )
T no W cos(w+m)
i
d Il -e? 2 t+ecos e ton - sin(wt7n)
_— s = [—Rcosn + -0 siny) — 2 W ] (A-51) :
dt nae | +ecosm I+ ecosm
dQ . M- w_
dat na sini sin(w+m) (A-52)

In order to avoid singularities for zero eccentricity and
inclination in Egqs. A-51 and A-52 these equations may be transformed
according to the following definitions:

X = e sinw (A-53) ‘
Xz = € COSw (A-54) -
Xg = sini sin§ (A-55)

Xe = sini cosf) (A-56) .
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ae

-

Under the assumptions

e << |
a ~ Qg
nF o (A-57)
T = nt =w+17
P << |
A, = R'2 . Ay _ji_? A, - _!!_f (A-58)
Qo No Qo Mo 9o Mo

and with the further definitions

xl = _ (A‘59)
. (A-60)

the equations of state for the variational problem may be derived from
Egs. A-48 through A-56 .

There is a direct equivalence between these equations and the
equations of state in the rotating coordinate system variables. That
is, each of the lagrange variables x;, X, X3, ... Xg, can be expressed
in terms of the rotating coordinate variables, x, y, z, u, v, and Ww.

Referring to Fig. 25 , define a position vector v in nonrotating
coordinates originating at the center of attraction F. Assume the motion
out of the reference plane is uncoupled from the in-plane motion.

Relative to a rotating rectangular coordinate system originating at
0 and rotating with angular velocity n this vector is

—

ToE x4+ (g +y)T (A-61)

where the unit vectors i and | are taken in the x and y directions, _
respectively. The vector velocity V is obtained by differentiating r.
- dr - -
vV = a1 = ui + vj + nxr

(A-62)
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Since n=nsk  the expression for V is

—\7 = [u—no(ro-l-y)]_i. + (v+nox)T (A-63)

Using Egs. A-61 and A-63 , expressions can be written for the

angular momentum C , the path speed V and the radius r of the vehicle

_C. = T xV = [x(v+nox)— (ro+y)(u—no(ro+y))] —t: (A-6U)
- — 2 2

vV o= VeV = /[u—no(ro+y)] +[v +nox] (A-65)

¢ 2T s S (gt y)? (A-66)

The following equations can be written for the angular momentum, speed

and radius of a body in an inverse square field.

Icl = Ka(l - e?) (A-67)

v s kB oLy s S ? (A-68)
_ all—e?)

[+e cosm (A-69)

Combining these equations with the absolute value of [ , and with

V and r from Eqs. A-64 , A-65 and A-66 the following scalar
equations result.

—g— = (I+rl)(l+ecosv7)
o] (o]
(A-70)
a
u y oo 9
No o (|+ro) - l+—y—- (A—Yl)
r0
o, x . Jecosm
noro r/0 -Og— (A'Yz)
0
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Finally, noting that

69; = X, Xz T esnw , Xz I ecosw
(A-73)
ecosm = ecos(t—w) = x, sinT + xgzcOST
the equations relating the coordinates are obtained.

—3—'; = (x; = 1) = x,8InT —x5COST (A=)
v = OST — X, SiNT

Noto X3 ¢ 2 *! (A-75)
u L 3 - - inT —

oty 2 (x, =) =2x, sinT — 2x5C0ST (A-76)

The components_.of the out-of-plane motion can be related in the
following way. IfN is a unit vector normal to the instantaneous.
transfer orbit and S is a unit vector in the direction of the line of
nodes, then

s =N xk (A-77)
and, since the angle between S and the vehicle is T- §)
cos (T-8) = 5 7 (A-78)
Also, the orbital inclination is
cosi = N » K (A-79)
Using these paramefers the equation for the elevation, 2z, of the probe
is

z

K = tan i sin(T-\Q:) = sini sin(T —Q)
(A-80)
or
2 .
T T T Xg COST + Xg SINT (A-81)
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The out-of-plane velocity, w, is

—_ = inT
Mol Xg SINT + xg COST

1. Equations of State

dx; oA
dr S
dx, )
9z 2AgsinT — Ag cosT
dxsy
& - 2Ag cost + Agsint
dx, 3
gz - 2 ym1) = 2xpsinT = 2xgcos T
dxg i
. — Aysint
dxg A
_d? wCOST
2. Euler-lagrange Equations
. 3
)\| = - —2— )\4
Xp =  2hgsinT
Xz = 2)\4c08T
Xa =Xs=Xg=0

noAg = 2(X\, + X\, sint +XzcosT )
NAR = —X, cost + Ay sinT

NoAw = ~Ag sint + hgcosT
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{A-82)

(A-83)
(A-84)
(A-85)
(A-86)
(A-87)

(A-88)

(A-89)
(A-90)
(A-91)

(A-92)

(A-93)
(A-9k)

(A-95)



-

3. Integrated Euler-Iagrange Equations

- 3
A= A > Ag T
A2 = Ay — 24 COST
)\3 = Xao +ZX4 sinT
As = CONSTANT
xs = "
XG - u

4., Boundary Conditions

(A-96)
(A-97)
(A-98)
(A-99)
(A-100)

(A-101)

A great simplification in the complexity of the equations can be

achieved by taking advantage of the symmetry afforded by the lagrange
variables x and x;.

be convenient to use limits-r/2 to 7, /2 for the "in-plane" state

variables.
Transfer
State Variable I
("in-plane") T=72
X, |
X2 X20
X3 X30
X4 Xa0
(out-of-plane) r=0
X 0
Xg O

FREE

Therefore, in performing the integrations it will

Rendezvous
-1 =0
2 2
X, +
| A I {
Xzo XZO + szf
X 30 X30 + Ax3f
X40 X40 4-Z§x4f
T=0 T=T
0 X5
0 Xef
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5. Integrated Equations of State (with initial conditions)

£ T by , . T 2 72
Dx, = 4hg(T + > ) - 4)\20(cosr—cos—2—) + 4Azq( sinT + sm—2—) — BT - T)
) sin T
Ax, = = dhglcOoST— cos%) + %@-[ 5(t + % ) - 3(sint cosT+ f )] A-102)
T, T; T,
+ —§2—)\30( sinft — sinz-r—zf—)-2>\4[4(sinr +sin2—f) — 3(rcosT + ?fcos?f)
T, . o T A_103)
DAxg = 4>\|O(sinr + sin —2f—) + -g—kzo(smzr —snnZ%) (
sint
+%39[5(r+32-—)+ 3(sinT cosT + 2f )]
COST; T, T
—2)\4[ 4(cost — —o?i) + 3(rcost + ?f cos —i)]
(A-104)

Dx, =>\,O{3(r+ %)Z—B[I—COS(T+%)]}

-
+>\20{(r + -% )[5COST+ 6cos %] - % sin(t +?2i)— % sint — 8sin ?f }

+)\3o{(T+ % ) [SSin% —SsinT ]+ % cos(r+%)— % cosT +8cos%}
+X4 {|6(T+§) —GI}[I —cos(r+%):| + 3(g)3 " %T<_~r2i)2_ _S_T3}
\A-105)

[ T ] [ . G ]
+ 2x20 cosT — cos? - 2x3o sint + sun—§

5 = ?5 (T —sinT cosT) — ?6 sin®t (A-106)

A 2

A
Xg = _._Eé sin?t 4+ 3§ (T + sinTcost ) (A-107)

6. Transversality Conditions - Transfer

Ng = O (A-108)
->-\§ = tant (A-109)
Ao

7. Constants of Integration

Transfer Ax), _ T
_— T(5rf+3$mrf) - 4Ax3fsm—2

T (57 + 3sintg) — 16 (1 - costy)

Ao =
(A-110)
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2 Dxy,

Ao = — 7 ——
20 57 — 3sinTy (A-111)

L
2 I;Ax_,,f— ZAX” sm?]
Aap = ‘ (A-112)
(57 + 3sinty) — I6( 1 -costy)

xgs ( T4+ sinmcosT) + xgp SIN°T,

Xs = f (A-113)
‘ 2(1}2‘ Sinzrf)
Rendezvous
A’(If . T
—+ (5% + 3sintg) — 4Axgpsin =+
Np: — 3T 2 (A-114)
T ( S+ 3sintg ) ~ 16( 1 — costy)
Nog = ! Ax (31 cos = -8 i )
20~ g TiLX s\ OT¢ -8sin
. {55 3sinrf)(érfz+ I)-2(85in—Tf——3chosE)2 2 2
6 2 2
+ szf[% rf3+8rf— 3r(i-cosy) - 8$inrf}
[3 = - 2 3
chos 5 8sm 2 Ax3f3m > + Axgs + 4xzosin >
(A-115)
T
2| T Dxap — 20x, sin =
)\30 : [ f 3f if 2 ]' (A—ll6)
- i 3
g = . 3, — % 5|16 LA )(”(‘:')Tf 3sing)
% (57 — 3sing) (=" +1) - 2(8sin5 ~ 37cos = )
16 2 2
Ax
- —-?2-f[ll-¢—fcos2 +3sm (I—cosrf)-225m—2—]
. Brye 7 Axg T
+ (5rf~3smrf)[ > sm-2— t3—+ x3osm?] (A-117)
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Z{x5f (1, + sintcosTy) + xg sinzrf} 2i [Tf sinfl + sint, sin(ﬂf+rf)]

Ag = =
5 2 . 2 2 .2
T, — sin“tT T, - sinT
f f f f (A—ll8>
. 2{x5f ':Iinz‘rf + xg (75 — sintg cosrf)} 2i [ T¢ COS Qf - sintg cos(\Q,f+Tf) ]
Ae = 2 .2 : 2 2
Tf sin Tf Tf - Sin Tf (A-ll9)
8. Controls
Ng Ag = 2X;0 = 3XgT + 2Xp08inT + 2X35 COST (A-120)
NoAR = 2Xg — XNppCOST + Agg sinT (A-121)
oAy = — N\g sint  + AgcosT
° ° ® (A-122)
9. Payoff
Transfer
ox 2 T, 2
J g (57 + 3sing) — 44 xAxy, sinl + 7 Axyg
3z (A-123)
No fo T, (51'f + 3sinT, ) = I6(I—cosrf)
. 2 .2
24 x i
+ e Tt + —_—
57— 3sintg T4+ Isin 7l
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Rendezvous

2

Dx ¢ , _ A Tt 2

J 8 (57 + 3sinty) 4 Ax)p Dxyesin > + 7 Axgy
No> to” (57 + 3sintg)- 16(1-cosTy)

| , { 5 % 3 T }2
5 (5% -~ 3sing) | 2Dxp4c085 5 2Axsfsm 5~ Dxgt Tfo” — Qxysin o

T (57 - 3sintg )( Tf + 1) - 2(3chos 5 8 sin —2f— )’

3 .
‘ N Axye( 37, cos 5 2 —8sin 5 ){ZAX2f cos & 2 - 2Qxy Sin 2 ~Dxgs + A —4x30sin—T21 }

(575 — 3sing) (= TP+ 1) - 2( 37 cos ot — 8sm—f-)

|6 2
2, 3
N TfAXZf(‘STf+I)
7 (57, — 35mr)(§-r +1)—2(37 cos—zt -Bsm—f-)
- 2 7y — sintg cos ( 28d¢+1y)
(sz—sinz’l‘f)

(A-12L4)

10. The optimal values for changes in the state variables x4 and £)
are predicted by the variational analysis in the case of orbit transfer
where the values x, and {) are left open at the final time.

3 T 5
Ax4* T T Axg—20xy sin—z-f- —l¥stin§f

LI . s .
. _———Srf—3sinrf{ > cos 2(51’f 3snnrf)+ 3'rfcosE—BSm—2—} (A-125)
Qf* = nw - —121 (A-126)
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Appendix IIT

Synthesis of the Optimal Controls

A. Rotating Coordinates

1. Control Equations

oA oA oA oA
. y y y (A-127)
o2V B L VR R T
oA, oA, oA, JA,
Ax oy ’ + o0 v T ov ' dx (A-128)
aAz aAZ
A, = 37 z + 3w w
(A-129)
2. Guidance Coefficients-Transfer
oA 2 ¢
L. cw {1 —cost')}{(29 — 27cosT')
dy ) (A-130)
aAy 24 . 1 ] 1 !
w3 (1 —cost") (Hlsint' — 37" cosT' — 87') (A-131)
oA 12
dvy - (572 + 37" sint’ cost' — 8 sin?c' ) (A-132)
aan - lé [ 70T sint' — 5572 + 8% sinTtcosT'+ 3(| — cosT!)(5 - 27c05r')]
y
(A-133)
oA, 6
W 5 [65T'2 — 807! sint' — 247 sint' cosT'—(| — cosT')( 25— 03 cosr‘)]
(A-134)
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a®

0A, 24 mn

v = - —&; ( 81 — Il sint + 37rcost' )( | —cost') (A-135)
oA, = =2 sin?¢’ ¢
dz - T'2 —-Sinzr' (A"l3 )
dAz _ —{(27t'-sin27) (A—l37)
ow 2 = sin?7

where
® = 4807 — 757> — 2407'cost' (| +cost') — 144 sint'( | —cosT') — 2137 sin®r’
(A-138)

3. Rendezvous

Due to the length and complexity of the synthesized, in-plane,
control equatims for rendezvous, the guidance coefficients are not
written explicitly here. Instead the basic equations are tabulated,
and the coefficients calculated from these equations are plotted in
Fig. 19 through 21.

0A, _ . 0C, oCo ac, L% . (A-139)
ax, = 3-5;7,-— 3 ax, T 4 aXicosr 4 o, sint
Ay 2( e _0C . 9C, )
- 3, o sint o, cosT (A-140)
) oA, OA,
A, = 3; ° + P (A-141)
oA oA
m . x . By
NOTE : 3v 3
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X 4)" ¢|2 ¢'4
C, = Y Pu Pee  Pas
° u ¢3I ¢32 ¢’34
v ¢4I ¢42 4344
° (A-142)
%o u X P
C. = ¢20 ¢2| y ¢24
‘ ¢30 ¢3| u 9534
Ps0 $a) v Pas
P (A-141)
where
¢|o
D = P20
P30
P10
and
P = _43_ t'® - 87" + 8sint'
¢, = 8(l-cost)—5t'sint
¢|2 = 5t cost' — llsinT' + 67!
b4 = 61— cosT) - %r.a
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12

4>22

F s
N

2

30
b3
4)32

P34

Pao $Pao Pag

P (A-143)

‘1’20 ¢2| ¢22 y
4)30 ¢3 ] ¢32 u

Pao Pay $42 v

P (A-145)
4)'4
¢24
4)34
¢44
(A-146)

N9
8(1-cost) - o ©'2

5t'cost' - 3sinT’

5t'sinT — 6{|-cost)

9
-7

2

— 6 sint'

‘a



0= 4(1-cosT)~ —g—-r'z a0 = 3T — 4sinT’
Y _ 5 : 05
¢, = > T'cosT' — sinT' b, = = TsinT
b5 = —g TsinT — 4 (1 —cosT') bap = % sinT' — %T'COST'
Ye (A_lur()
$Ppq = 3 (T — sinT!) $ae =31 —cosTY
.2,
oA, _ _-esin'T (A-148)
0z @ — sin®r
. oA, —(2T'— sin2T") .
ow ) 2 — gin?7! (A-149)
B. ILagrange Variables
. 1. Controcl Equations
R 0Ax, X dAx, A%Z + OAx Bxs + an4Ax4 + axw"w
oA O0A oA OA : 0A
= —S —S -5 -3 -3
As = dAx,Ax' + O0A Xy Bxg obhxy 37T 9A 4Ax4 Oxz0 30 (A-151)
OA,, 0Ay
A,= T Axg+ —— AX
w Axg 2 OAxg —®

2. Guidance Coefficients-Transfer

g — 4 sintT' sin -E—

0A X,

™ 57t* 4+ 3sint') — I6( 1~ cosT")

(A-152)

(A-153)
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dAg 2cost!

= A-154
D x, 5t — 3sinT! ( 54)
0Ar 27r'sinT'
0Ax 57+ 3sint') ~ I6(! - cosT') (A-155)
i T L | -
dAs _ 8 cosT'sin > (57 4+ 3¢inT) (A-156)
OAXI 5 + 3sint') - 16(l —cosT')
dAg 4sint' -
= -1
ONx, 57'—3sint' ( o1
OAy : cos T sin?t! (A-158)
A 2 - sin®7!
0A,, - % cosT(2T'- sin27) (A-159)
0Axg 2 — sin° ¢’
aAS 4(2sin —12:— T'cost')
d0xs  T(5T'+ 3sint') - 16( | - cos T (A-160)
3. Guidance Coefficients-Rendezvous
oA 4 sinT'sin = 2{5‘—3' '+ 2cosT'( 3T Ll—8'5,'n-1:)]
R sinz'sin = B ™| 57 sinT cos cos 5 in =
anl Q B (A-161)

0Ag  2t'cosT! I% 2 + 1) + cos % (57'- 3sint') + 2(3r'cos—Tz— - 8$inT§ )(|+cosr'cos-% )

0Ax, ) B
(A-162)
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T
- )

]

OAR -~ 2T'sinT! + sin —% [51" —3sint'4+ 2cost( 3T cos-—g - Bsin
i an3 h O B
oA L [ST'— 3sint' + 2cosT'{( 3T'cosL‘ - BSin—T—' )]
R__ 2 2
an4 B
OAg ) 2 sin % [ 5t'=3sint'+ 2cosT(37'cos 12— -8 sin—rz— )]
c)x:,,0 B
| . e T
OAg 7 (57" + 3sinT l65u12 cost')
. 0Ax, 5 Q
1 @ [ H ' . [ [ L[ — H _T:
B T€T[3T(5T Smnr)4—83mr(37a52 Bsm2 q
B
¢ OAS i 47'sinT % 2 4+1) + % T'COS —g( 5t — 3sinT')
v anZ T‘ B T‘ T
( 3r'cos§ — 8sin 5 Y 3r'+ 4sinT'cos 5 )
+
B
0As 4(t'cost' — 2sin %‘ )
ODxs . Q. \ \
N - sin ?*[ 3T (5T — 3sinT') + Bsint( 31-'005% - 8$in% )]
B [}
dAg o %—[3T15T“-3ynf)+ Bgnf(Srbos%-—-Bﬁn%)]
. O0Ax, B
. aAS _ sin % [ 37(57'- 3sinT') + 8sinT 3T'cos% —~ 8sin % )]
axw B
OAy 2sint(T'+ sin21)
» = T2
OAx g ® — sin® 7
OAy Z[Smr'+cosv0v—-mn2rﬂ
0 Axg ) 2 — sin¢

(A-163)

(A-164)

(A-165)

(A-166)

(A-167)

(A-168)

(A-169)

(A-170)

(A-171)

(A-172)
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where

16(1-cost) - T{5T + 3sinT) (A-173)

9]
n

2(8sin xr_ 3r‘cos-% )2 (A-17k4)

) v : 0 i 2 -
(57 — 3sint')( e T + 1) 5

o0}
1"
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IN-PLANE COMPONENT OF J
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FIG. 13
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FIG.14
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|

AV

=

DEFINITION OF SYMBOLS

Gravitational constant

Vehicle position vector

IR | = magnitude of R

Velocity vector of vehicle
Impulse velocity vector

AV | = magnitude of A V
Magnitude of thrust

Unit vector in direction of thrust
Mass of vehicle

Mass flow

Constant, proportional to specific impulse

Lagrange multipliers or adjoint variables

2]

magnitude of A

| A | = magnitude of i

Component of ) parallel to R
Component of )\ perpendicular to R
Time

Time at end of first thrust period

Time at beginning of second thrust period




SUBSCRIPTS

Initial value

Final value
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REPUBLIC AVIATION CORPORATION

Farmingdale, L.I., New York

APPROXIMATE INITIAL VALUES
OF LAGRANGE MULTIPLIERS FOR THE
TWO POINT BOUNDARY VALUE PROBLEM

By

Jack Richman

SUMMARY

This report describes a method for obtaining a first estimate of initial
values of the Lagrange multipliers for the '""Two Point Boundary Value Problem
of the Calculus of Variations'.

This first estimate is obtained by assuming the '"Two Impulse Orbit
Transfer Problem' to be a reasonably close approximation to the Calculus
of Variations problem.
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INTRODUCTION

The method used to solve the two point boundary value problem of the
calculus of variations is one where the decision functions are such that all the
trajectories being used are extremals [1]. In addition to the state variables,
that appear in the equations of motion, there are a number of adjoint variables
or Lagrange multipliers that satisfy additional equations for the optimization of
the given system. The boundary conditions for the adjoint variables define the
natural end-point conditions of the state variables. This natural end point, in
general will not be the desired end point. A differential correction scheme
provide the means of obtaining another optimum trajectory, the natural end
point of which will be closer to the desired end point [2].

The equations of motion of the vehicle in the gravitational field of a single

body subject to thrust are as follows:

. Rk

R=-fml &)

m(tB)=m(tA)+J:B m dt @)
A

where m = - lg and T is a unit vector parallel to the direction of thrust.

The optimum decision functions are determined with the help of the
, Lagrange multipliers,A, A, and 0 which satisfy the following equations

- A 3u(A R)R
A=-k2 282 2=
- r3 r5

(3)

o(tB)=a(tA)+_{tA&d_t (4)
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where

" _kA
o= .
m

The thrusting program is determined by the sign of the switching function

S, which is given by

> =
m c <0 k=k_.
min
The direction of the unit thrust vector T is given by the direction of the
Lagrange multiplier A

T= (6)

>|1>

The natural end point if reached when
o (tF) =1 (7)

The problem is to generate a set of initial values of the Lagrange multi-
pliers such that an optimum orbit can be computed, where the natural end
point matches the desired end point. This is accomplished by obtaining a first
estimate of the initial values and improving these by using a differential correc-

tion scheme.

One of the requirements necessary for a rapid convergence of the differ-
ential correction scheme is that the first estimate of the initial values of the
Lagrange multipliers be reasonably close. The following is a method for ob-

taining a first crude estimate of the initial values of the Lagrange multipliers.
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INITIAL VALUES OF LAGRANGE MULTIPLIERS

First Method

A first estimate for the initial values of the Lagrange multipliers can be

obtained by making the following assumptions about the trajectory.

(a) Two burning periods are required to accomplish the optimum tra-
jectory, one occurring in the time interval t0 to t1 and the other
in the time interval t2 to tf. During the time interval t1 to t2 the
vehicle is in a coasting region.

(b) The time intervals in the thrust regions are so small that A y_(to)
and AY(tF) are obtained by solving the ""two-impulse orbit transfer"

problem, where
AV(t) = V(t;) - V(t)

(8
A‘_f(tf) = Y(tf) - Y(tz)

(c) In the regions of thrust the gravitational force may be neglected.

I in addition we assume that the thrust direction is fixed the differential
equations for the state variables and the Lagrange multipliers, within the burning

region reduce to

V=-2T (9)
A=0 (10)
t
o (t)=0o(ty) + I‘t Gdt (11)
-
where .
&=- @2—)‘ (12)
m
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and

m (t) = m(t,) + (t-t,) M (13)

In the burning regions the thrust vector is in the direction of AV. Therefore
from Eq, (6) we have

AV
A=A AT (14)

In the coasting region, m and ¢ are constant. Thus, it follows that
o(ty) =oft,) (15)

m(t,) = m(t (16)

2)

For the computations of the initial values of the Lagrange multipliers, one

proceeds as follows:

First Egs. (9) and (10) are integrated in the two burning regions t o to t1
and t2 to tf, resulting in

AV0
m(t,) = m(t ) e o (17)
(AV0 +AVf)
m(te) = m(t ) e i ¢ (18)
X (t)) = X (t,) = constant (19)
X(ty) = X (t;) = constant (20)
A(t) =A(t) +(t -t ) X (t) (21)
A(te) = A(ty) + (6 - t5) X (L)) (22)

where the time spent in the two burning regions is computed by using Eqgs. (13),
(16), (17), and (18), and is given by

250




-«

—90
mt)e ° -1
(8- t)) = = (23)
m(t)e ° (e ¢ -y
(tg-ty) = & (24)

From the assumption that the thrust direction is fixed during each burning
interval it is evident that A and X are in the same direction. Therefore only the
magnitude of A and X need be considered, i.e. A and X.

At the transition times ti and t2 the switching function must be zero. Thus,

.

A (tl) o (tl)

m(tl) - "¢ (29)
and
Aty) Oty
it ) = =3 (26)

It can be shown that by integrating Eq. (11) in the two burning regions and
making use of Eqs. (12) through (26) one forms the following three independent
equations with five unknowns, i.e., o(t ), A(t )s A(t ), At )andk( ¢)

Av

c O Y yo
m_(to'i"’(to)' - X(t)=0 _(27)
Av, AV AV,
ce © c c "¢
mty M tE @-e ) X0t * ey © (e ° -y
A AVf
(t,)
[(1 -e )+A ] =1 (28)
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AV
: o AV o AV ¢

) Peg-aep)r gl © Dogrlie © Dep=0 @

By making use of the transversality condition A- R- X- \i+ om= 0 at times

t0 and tf one can obtain two more equations.

V({t )-AV .
-X(t,) fwo o _ I‘;’ao) X(t) +o(t)m=0 (30)
AV _+AV
f
R AU Y e :
-X (tp) AV, - m(to)“e A (tp) .+ m=0 (31)

Egs. (27) through (31) constitute five equations with five unknowns. The

solution of this system of equations is given by

(AV0+ AVf
m(t,) -~ ¢  AY,
At )=—2>e 5 (32)
(o)
X (t,) = (33)
(AV ot Avf)
ot)=e ¢ (34)
(AV_+ AV,)
miy - sy,
Aty =—75—e &, (35)
X(t)=0 (36)

It is of interest to note that the magnitudes of A at the initial and final times
are equal and directly proportional to the mass at the final time. In addition, the

value of ¢ is also proportional to the final mass and may be expressed as

m(tf)

oM = 5

(37)
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Second Method

An approach for obtaining a better first approximation is to remove or at
least ""relax" some of the assumptions made in the first method. More specifi-
cally, instead of completely neglecting the gravitational force in the regions of

A thrust it can be assumed that the gravitational force has a constant value of
-UR, o ~uR
3 in the first region and 3
To e

in the second region.

‘ In addition, we assume that the direction of the total acceleration in the
two regions of thrust is parallel to the vector AYO and Ayf, respectively. This
implies that the direction of the thrust is not fixed.

It is clear that in the region of thrust the vector A lies in the plane formed
by the vectors R and AV . It is most convenient to resolve A into components
v along the vector R and normal to it. These two components are designated as

AE and An, respectively.

The differential equation for A can now be written as

" N, = 2B (38).
£ 3 "¢
Xn = %Aﬂ (39)
r

The solution to Eqs. (38) and (39) is given by

_ | 2u B .. . 24
Xg— Ag(to)cosh\/r3 t+ 2 >‘£ (to)smh\/r3 t (40)
. A= (t \/1“— t+J—r3 X_ (t) sin J*‘— t 41)
. n- n(o)cos 3 m 77(0 s 3

Since the intervals of thrust are assumed to be of short duration it is per-

missible to approximate Eqs. (40) and (41) in the regions of thrust by neglecting

2N

the second order terms of a Taylor series expansion, i.e.,
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A~ M) + (E-t ) X () t, Stst (42)

1
LB~ L () + (E-ty) X (ty) t, St<t, (43)

Similarly, one can approximate X in the regions of thrust to the same order of

accuracy.

R 2 .

Xy (1) ~ ;-‘g (t-t) g (ty) + X (t) (44)

. N . t,st=t

Xy ()~ - 3 (£ £) A (6) + X, (k) (45)

. - 2U _ .

Xg (= 55 (- tp)hgltp) +Xg (1) (46)
ty St <ty

. n .

X, ()~ - s (- i)k (tg) + X, (&) | A7)

The procedure for obtaining the initial values of the Lagrange multipliers
is now the same as in the first method except that Egs. (19) through (22) are now
replaced by Eqs. (42) through (47).

CONC LUSION

A set of approximate initial values of the Lagrange multipliers have been
derived. In addition, a method for obtaining a better first approximation has
been outlined. It should be pointed out, however, that as one attempts to obtain
these improved first approximations in the manner outlined, the algebraic mani-
pulation of the expressions involved become more cumbersome and additional

approximations may be needed.
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SUMMARY

This report is submitted in partial fulfillment of the contract in "Space
Flight and Guidance Theory, " No. NAS8-11040. It presents a discussion of
Lagerstrom and Kevorkian's two-variable expansion method for the compu-
tation of lunar trajectorie s. Section 2 discusses the general background of
the method in terms of singular perturbation theory. Section 3 discusses
the major steps in the development of a uniformly valid solution for earth-
moon trajectories and Section 4 presents a slightly different approach to the

same problem.
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1. INTRODUCTION

In refs. (3) and (4) a new method was suggested by Lagerstrom and
Kevorkian for the computation of lunar trajectories. The method was similar
to one which had been used successfully in a number of singular perturbation
problems of boundary layer theory (refs. 1, 2). The result of approaching
the lunar trajectory problem as a singular perturbation problem was a uni-
formly valid solution (i.e. valid everywhere in the earth-moon space) to
first order in the parameter for a certain class of trajectories. The class
of trajectories is that which starts in a neighborhood of order .<- near the
earth and arrives near the moon to within a neighborhood of order <. .
Similarly to other singular perturbation problems, this uniformly valid
solution was obtained by formulating two solutions, one valid near the earth
(the "outer solution') and the other valid near the moon (the "inner solution'').
The inner solution is expressed in terms of ''blown up'' variables. The outer
and inner solutions are left undetermined by introducing a number of con-
stants; these constants are determined such that the singularities in the
outer and inner solutions cancel when they are combined to form the ''com-
posite solution. "

The basic idea of the method was worked out in its application to the
two-fixed center problem with special initial conditions (ref. 3); then the
same technique was used in the restricted three body problem with more

general initial conditions (ref. 4). One of the most interesting results was

the finding that the outer solution must contain a part which is proportional
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to the small parameter <. , or else it cannot be matched to the inner
solution; the outer solution can thus be interpreted as an earth centered
Kepler ellipse with a first order correction to take care of the moon's per-
turbation. In comparing this method with the usual way of ''patching conics'’,
it was thus stated that a patched conic method could not be accurate, unless
the geocentric ellipse were corrected for the moon's perturbation. The two-
variable expansion method was thus offered as an improvement over patched
conic methods and it appeared to be (at least initially) equally practical.

This report presents an explanation of the method (in Section 3), based
mostly on ref. 4, and the beginning of a somewhat different approach (in
Section 4). The claim that this report is an '""explanation' is made with all
modesty; it is an explanation in the sense that it presents and discusses the
major steps of the developments in ref. 4, leaving out many of the laborious
details. In this way it is hoped that the reader may gain a full appreciation
and understanding of this very interesting method; this report may thus serve
as an introduction to the reading of refs. 3 and 4. This explanation is pre-
ceded (Section 2) by a general discussion of singular perturbation theory,
based mostly on ref. 1 and 2. In particular with respect to this section,
and the conjecture and theorem on which the discussion is based, the authors
gratefully acknowledge personal communication with Dr. Kevorkian.

In Section 4 the beginning of a slightly different approach to the same
problem is presented. Whereas the work by Lagerstrom and Kevorkian is

formulated in inertial coordinates, this new approach makes use of rotating
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coordinates, and the Jacobi Integral in order to solve the problem as a third

order system of differential equations.
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2. DISCUSSION OF THE TWO-VARIABLE EXPANSION METHOD

The method used by Lagerstrom and Kevorkian to formulate a uniformly
valid representation of earth-moon trajectories is that which is used in the
singular perturbation problems of boundary layer theory. A singular per-
turbation problem may be characterized as follows: a differential equation

L /,/\(/_ 7 [}: ¢ and boundary conditions/3/l¢, E) = ¢© depend on a

small positive parameter & in such a way that the order or type of L

change when £ =o , while the number of boundary conditions remains unchanged.

Thus, if ééarepresents the solution of Z/X, a, 0) =0 , one may not
expect that Z{ approaches [[0 uniformly as £ — o.

Fundamental to the solution of singular perturbation problems is the
introduction of certain limits. Consider functions%of £ , positive and

continuous in 2.2 < <« ﬂ and tending to a definite limit as E—-—-) O; intro-

duce a new variable xf:,— > , then a limit on F/X) E) is defined
as ’
/&:1711‘ F(X) 6) = ié—’;;/; F[(% )gl)/ ?:}} Xf fixed and ?é o.

If/;—_ /, the limit is usually called '"outer limit, ' and X the ''outer
variable', since in the boundary layer problem which motivated this formu-
lation this limit presents a satisfactory approximation in the physical space
away from the boundary. An "inner variable' and "inner limit'" are obtained
in many problems by putting l'j; £ ; the inner limit is an approximation in
that region of the physical space where the differential equation changes

order (or type) as £ —> 0. As the inner variable is kept constant, the
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physical variable X tends to Z as € —= O ; it is as if the problem is

IS4

discussed in terms of "'stretched'' or "blown-up' variables. Theoretically
of great importance are also the concepts of "intermediate variable' and
"intermediate limit, ' which are intunitively understood as obtained by a function .
]L///,f), where the order of magnitude ‘y//;@)} is in between &’{//) and &/«C_)
A more rigorous discussion is given by Kaplun in ref. 1.
The formulation of a solution based on inner and outer limit is based .
on a "matching' of the two limits. But since there is no a-priori reason
why the regions of validity of inner and outer limits should overlap, it may
seem to be surprising that this has been so successful in many problems.
It is here that Lagerstrom and Kaplun have contributed greatly to the under- -
standing of thé problem by using the intermediate expansion to bridge the
gap. In ref. 5 Erdelyi discusses this in some more detail, but (as here) also
in an intuitive manner.
The method by which a uniformly valid solution of singular perturbations
is obtained is based on a conjeéture and a theorem. The conjecture is: the
solution of the limiting differential equation (obtained by subjecting the
differential equation to the above defined limiting process) is identical with
o
the limiting approximation of the exact solution. Thus, if an exact solution
cannot be obtained directly, one can get an approximation (actually an
asymptotic expansion) by solving the limiting differential equation. The
validity of this conjecture is supported by a number of problems to which

exact solutions are available.
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In a singular perturbation problem it will be necessary to combine at
least two .limiting solutions (i.e. inner and outer) to obtain a uniformly valid
solution, that is a solution valid in the entire physical space of the variables,
Kaplun's extension theorem bridges the gap which may exist between the
regions of validity of the limiting solutions. The formulation of the exten-
sion theorem requires the definition of ""equivalence classes''. Let/ and ?
be functions of £, positive and continuous and tending to a definite limit
as &E-—>0, then /(f) andi ﬂé’) belong to the same equivalence class

if
o < «4:/&‘_;—;240"

< -—>o0

A partial ordering of equivalence classes is defined by

Mf,{ym@f //j 5 f:a.

¢ —>0 ;—

A set S of equivalence classes is convex if, for every ordf and ordg,
in 5 ord f L ordﬁ £ ord j, implies ord { is in 5 Open and
closed convex sets of equivalence classes are defined according to the usual
definitions of set theory. The extension theorem may now be formulated as:
If an approximation is valid to order £ in a closed set 5 its domain
of validity may be extended to an open convex set 5 , containing S .
Thus, the inner and outer expansions are valid in larger regions than
those for which they were derived. The regions of validity of inner and outer
expansions may now overlap or else they may be joined by an intermediate

expansion. Whether the inner and outer expansions are matched directly
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or by the use of an intermediate expansion, the matching is performed by
using overlapping regions of validity provided by the extension theorem.
It will be seen that in the earth-moon trajectory problem the matching can
be performed directly without the use of an intermediate expansion.

The following illustration may be of some help in understanding the
meaning of the expansion theorem. In figure 1 the shaded areas in the x/£
space indicate the regions of validity of inner and outer expansions in a

problem with singularity at X =0

Exp. /

Outer Expansion

4
%

////'/////

C Intermediate Expansion

Fig. 1 EXTENSION THEOREM

The outer expansion is valid for a range of X bounded away from zero.

The region for the inner expansion shows the typical behavior near the

singularity: As £ tends to zero the physical variable X tends to zero
X

also; the inner variable Xg = Z re’mains finite. It is clear that for

small & the regions of validity of inner and outer expansions do not over-
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lap. But the expansion theorem provides for small additional regions of
validity, indicated by the dashed lines in fig. 1. These regions can now be
used to provide overlap with an intermediate expansion (obtained by intro-
- ’X )
ducing the intermediate variable >\f = 7 , ordE < [5)( ord/ )
fte)
and matching can be performed.

The plan for formulating a uniformly valid solution of a singular per-
turbation problem is now clear. An outer solution of the differential equation
is obtained, satisfying some of the boundary conditions. Typically, the
boundary conditions near the singularity are neglected, but the outer solution
must have as many arbitrary constants as there are neglécted boundary
conditions., Next, the problem is '""blown up'" in the region near the singularity
by the transformation to inner variables. The boundary conditions which
were neglected in the outer solution can now be satisfied by the inner solution,
but the other boundary conditions will in general not make sense. Therefore
the inner solution is partly indeterminate. To remove this indeterminacy
the inner and outer solutions are ''matched'" as follows. The outer solution
is evaluated at the inner region, the inner solution is evaluated at the outer
region and these two functions are equated after the introduction of the trans-
formation X = -~ . Finally, a '"composite solution'' is obtained by

F )
adding the inner and outer solutions and subtracting either the inner solution
evaluated at the outer region or the outer solution evaluated at the inner

region. This either/or condition reflects of course just the matching con-

dition. The matching and the formulation of a composite solution described
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here is possible when the regions of validity of inner and outer expansions
overlap, if this is not the case the same procedures have to be followed on
either side of an intermediate expansion.

The extension theorem is the basis for success in matching; the con-
jecture makes it plausible that the composite solution is uniformly valid,
even though the inner and outer solutions themselves are only valid in their
respective regions.

The application of these principles to the earth-moon trajectory problem
takes the following form. The equations of motion of the planar re stricted
three body problem (in non-rotating coordinates) are formulated with one of
the coordinates, X , as the independent variable. Uniformly valid expres-
sions are sought for the time and the other coordinate as functions of X and
the small parameter Jc , the earth-moon mass ratio. Near the earth the
influence of the moon is seen in the equations of motion as a perturbation
(proportional tO/,{,) of the Kepler equations. Clearly, in this problem the
singularity is located at X—— |, since near the moon the attraction of
the moon itself is the major force. An outer solution is formulated in the
physical variables X , 4+ and >/ : it describes the earth-centered part

of the trajectory. An inner solution is formulated in the "blown-up'' variables

X , + and ? , the differential equations for which show the moon's
attraction as the major force. In principle the outer and inner solutions are

asymptotic expansions of which the separate terms can be obtained by sub-

4
stituting fzgaf/bcfl +/Lz/gz i, Y= Yo # AN, F ALY, F i
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in the equations of motion, ordering the results according to powers of ¢t
and solving the equations for _f’a, >/& ) t// >// .+.,., 1n succession., A
major result of Lagerstrom's and Kevorkian's investigation was the finding
that, in order to formulate a first order solution, the outer solution must
contain the correction of order A to the earth-centered Kepler trajectory.
The reason is that the angular momentum near the moon (for a passage at
distance of order 4. ) is of order « , and can thus only be defined when

terms of order _(+ are included in the approach trajectory. The matching

of inner and outer solutions is performed by equating term by term the results

of evaluating the outer solution at X =/ and the inner at X = -« ; for
this purpose the inner as well as the outer solution are expressed in the
inner variable. The results of the matching are the elements of the moon-
centered hyperbola and the phase constant of the moon. The composite
solution is obtained by adding the inner and outer solutions and subtracting
the outer expansion of the inner solution. From the form of inner and outer
solutions it is clear that no intermediate solution is required.

In their first paper on the three-body problem (ref. 8) Lagerstrom
and Kevorkian treated the problem of two fixed fo.rf:e centers (the Euler
problem). They discussed trajectories which leave from the center of the
larger mass, the Kepler part of the outbound trajectory being a straight
line. The major result was that 1) a uniformly valid solution to order /e
could indeed be obtained and 2) the outer solution must contain a correction

of order/p,, in order to be able to determine the constants of the inner
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solution. Because of the very special initial conditions the outer and inner
expansions are of simple form and therefore the principles of the method are
clearly demonstrated. In their second paper (ref. 9) they treated the more
practical restricted three body problem with arbitrary initial conditions
(although restricted to a neighborhood of order ;. near the earth). While
following the same method in principle, the details of the analysis are some-
what obscured by the added difficulties from the more general initial condi-
tions and the motion of the moon. The following section refers in particular
to this paper; it interprets and explains the method by lifting out the essential
difficulties and omitting all easily understood details. References 10 and 11
discuss some numerical aspects.

The following section contains an outline and discussion of réf. 9. It
is hoped that, by concentrating on the major difficulties, that section, together
with the general discussion in this section, will be useful for the better under-
standing and appreciation of the very interesting method of Lagerstrom and

Kevorkian.
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3. TWO-VARIABLE EXPANSION METHOD FOR EARTH-MOON
TRAJECTORIES

3.1 Equations of Motion; Outer and Inner Variables

In geocentric, non-dimensional, inertial coordinates X, the equa-
g q

tions of motion for the planar restricted three body problem are:

-

. X , Em -X '
X +(1- ) 3 */‘{ f': e b ()

- :
G-y = 42 f = Dm =Y _
where 7 )r'ﬁ 4 ‘% 3 o
/,-3-: xl &
i M

1)

/a is the earth-moon mass ratio, /(L' , and the coordinates

7]+,

t
of the moon are

b et T), 4 = wilemT) @

/ isa phase angle which is to be determined later.
The goal is to formulate uniformly valid expressions (i.e. valid near
the earth as well as near the moon) to order ¢« for trajectories which

leave from a neighborhood of order ¢c near the earth and reach a neighbor-

s

hood of order/a_, near the moon,

The outer variables, to be used for the outbound trajectory near the
earth, are the physical variables X ;Y Z’, . The inner variables will be
chosen as ’ .

)—\-— X = Ceu (/,é =7) — )l_ Qe /ﬁ —7‘)
/éL‘ ’? >/ - /C(——

1)

-

_’: {/\—/— 7__) _ T
e

(3)

™.
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This choice assures that the motion near the moon is Keplerian up to

P

and including the first order of 4 and that the velocity far from the moon
is of the same order (i.e. of order 1) as the velocity far from the earth.
The additional phase angle I is introduced so that 71_. can be made to , o
vanish at perilune.

1/3

It is interesting to note that if a scale factor of /¢~ is used in the

definition of ‘)Z and :7 and the time is left unscaled, the equations of .
motion in terms of X , Y and t after letting _t4c—> O are the Hill
equations; these equations are valid in Hill's region, i.e., a region of order
/(_1/3 near the moon. If an intermediate solution were required, these equa-
tions could provide it. It will be seen that the inner and outer solutions can .
be matched without using an intermediate solution, although this cannot be
expected a priori. Apparently, for the class of trajectories considered
here (i.e. coming from a neighborhood of order ¢¢ near the moon), the
passage through Hill's region is so fast that Hill's equations do not need to
be considered.

It will be convenient to introduce the coordinate X as the independent
variable; the matching of inner and outer solutions is then done on the basis

of distance instead of time. The equations of motion in the outer variables

are then Z/_// . %
— zj:,, + //——/é) 3 ‘=/‘f—
>/// f//z_/ (4)

px T e Ty
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The equations of motion in inner variables, valid near the moon, are

Keplerian up to and including the first order of/btv and do not have to be
written here. Terms proportional to the first power of ¢¢ are not present
because of the scaling of the variables and because the moon centered X s

—

y axes are taken parallel to the earth centered X , 7/ axes.

3.2 Outer Expansion

The right hand sides of equs. (4) represent small perturbations due to
the moon; near the earth the solution of equ. (4) is thus nearly Keplerian and
it will be convenient to specify the initial conditions of the trajectory by giving
the values of the Kepler integrals. The integrals to be chosen are the total
energy %e , the angular momentum 'Zc’, the location of perigee and the
time of perigee passage. In order to reach the neighborhood of the moon,

) s o Dl
the total energy must be 0(/) ; the initial velocity is thus /A“"" and,
since the trajectory leaves from a neighborhood of order (. near the earth,
. L - -
the angular momentum is &//LZ . Without loss of generality the perigee

may be taken to be on the x-axis (on the side of the earth opposite to that of

the moon). The initial conditions are thus

at =0 ﬁ¢= ——-—ﬁz (5)

’gE = /.éb/ya)\ (6)

perigee on x-axis

and the time is specified by requiring that the Keplerian approximation is

exact at X = O to all orders of A
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Since the angular momentum is of order ¢ '“ it is clear that, for the

class of trajectories discussed here, Y is also of order /(/1/2. The

asymptotic expansions for £ and >/ may thus be taken to be

o/ / .
Z/’(,/‘}:Za(x;,ﬂ‘)*‘/éf,/X)J-.,,, | (7)

,, y
and Y(x,0) = L (% 0) + LY (X)# e ®)

The differential equations for '7£,. s t s >/ and are found by
- i / /L /

substituting (7) and (8) into the equations of motion (4) and by ordering the

results according to powers of ¢ . The equations for fc and 7/{’- are

of course just the Keplerian equations (equ. 4 with zero in the right handsides)

and their solutions do not have to be repeated here. However, one detail
must be pointed out. Whenever the parameter .. appears as ( 7 —.«),
the nondimensional gravitational constant, it is not subjected to the limit
process. Furthermore, the angular momentum constant has been written

as /41,}7— )\ and for these two reasons the parameter {¢ appears thus in
the expressions for the Keplerian part of the trajectory. This seems at first
to be in contradiction with the principle of the singular perturbation method
according to which the"zero-order solution would be independent of the

small parameter. Allowing the small parameter to appear in the Keplerian
part results in somewhat more convenient expressions. The first part of

£ (x’ /,(,) is now written as

£olx ) = Ly (X)# 025, (%) (9)

.”
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If the solution had been started with zlao ()() , according to a strict
application of the limit process it v;rould be necessary to consider a separate
"boundary layer' near the earth, because the relative orders of magnitude
of the terms in ‘[:ﬂ (X) W) are different for X = O() and X = O(/L)
This nonuniformity has nothing to do with the moon's perturbation and is
taken care of by letting . appear in the Keplerian solution.

The equations for the first order corrections 'é/ and >/' are:

{/ ” 34 If /
— 17;:—3‘ + ———-————z(o?#/ = A (10)

/

V4 V]

L_£00X A,/ (11)
T S

with {:: {/{x)]ﬂ -0 and ;a :[?/X)Za,za .

Because the initial conditions have been chosen such that the Kepler solution
is exactly valid at X =p , the initial conditions for 11:, and )/, are

simply

Zl//O)z Y, (0) =0  and zf ‘l0) and M ‘lo) .

3.3 First Order Corrections in Outer Expansion

The first order integrals of (10) and (11) are easily obtained as

-4’ 47 ) L0

‘/7‘ >
XZ’—)’/=400/[(‘; /f/jp/f/a/f (13)

and
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In principle ’f/ and >// are thus obtained by quadratures but so far

no analytic expressions for t’/ and Y, have been found. The functions

-
=

and 479 are unbounded for X —> | and their behavior near X =/ can
{
be studied by expressing the several parts of :f and /“f?a in Taylor series

near X =/ . The results are

U L ? /

- _ (
= (/%Lé)/z W;X>"‘+//~X) 7 @(x) - o

A
(1) = 48 I Ty o
7 (L) | (1-X) % 7L(/fx) )
where é()() and /ﬁ/x) are the regular parts of ]ir and /7.; ,

/
U= Vo) = F

which is the % velocity of the Keplerian trajectory at X = / .

and

Using (14) and (15) the first order corrections to the Keplerian part

of the outer expans1on may be written as

222
£ () = ._(;;_Z).%_— / /;// - lylr-£) fWZ e gf/z J{}df

(17

Since (at least to this time) no analytic solutions for Z/ and 7' have
been found, the complete trajectory can only be computed by evaluating the
quadratures numerically. Clearly, this causes numerical difficulties be-

cause of the singular behavior near =/ . Itis of some help in establish-
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ing a computer program based on this method that £, (X) and Y, (x) depend

¢

on only one parameter, namely the total energy - ﬁz . The corrections
could thus be computed and tabularized once and for all. Also, near X =

it and y’ may be expressed much more simply as
-%
Z, = (1#43) /7 (1=X) + J () + ) (19)
> —3/7_ l ~
‘ )’/ = (//-/{") ‘éZ //'—X) 7 I//D) + 0(/) (20)

where ¥ and o( are functionsl of the total energy alone. Unfortunately,
Y and 0{ become unbounded as ’/0_9 /, that is for the minimum
energy trajectories. This difficulty has been treated in detail in ref. 6.
Equ. (19) and-(ZO), and particularly the functions Y and J , play

an important role in the matching of outer and inner expansions.

3.4 The Inner Expansion

The equations in the inner variables X , y and Z have ¢ only
to the second and higher powers. Since the present purpose is to develop
a solution to first order in 4 the moon centered part of the trajectory is
thus Keplerian and, in particular, hyperbolic. It will be convenient to
®
characterize this hyperbola by the four constants
M , the X component of velocity at X= — o

/

VI , the ? component of velocity at X = — o=

K - /4 K—Bé{, related the direction of the asymptote

! U,
and £ =0 at perilune.
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In the definition of /ﬁ ,

A-:,aféczo? Be GExuné&

@ is the semimajor axis, & the eccentricity and & is the counter-
clockwise angle between the X axis and the apse line of the hyperbola. The
expressions \_77 (X) and -E (X) do not have to be given here (since they are
Keplerian) except as they are needed for the matching of inner and outer
solutions. For this purpose their values as X —>-are needed. These

are

AV -BU, (21)

g= Vg ANZBL
éé, 4L,
Z = 2(——:/-4- 7 5—42,4‘7 :‘:};—:‘
/ f /é/d, & (22)

as follows readily from the equations of hyperbolic motion (most conveniently

by letting the eccentric anomaly approach — e<).

3.5 Matching of Inner and Outer Solutions

The purpose of matching the inner and outer expansions is to determine
the constants of the moon,centered hyperbola, thereby also relating the
singularities in the two expansions in such a way that they cancel each other
in the composite solution. Because the singularities are logarithmic in
nature in the inner as well as the outer solutions, such matching can appar-
ently be achieved without the use of an intermediate expansion.

The geometry of the matching is illustrated in Fig. 2, as much as it

can be illustrated. The part of the figure related to the inner éxpansion is
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drawn in the scaled coordinates (X ) and must be thought as infinitel
) 3 g y

*a

small in comparison with the figure for the outer expansion. It may be
remarked that this matching is strictly analytical, whereas the ''patching'

of conics is strictly geometrical. A direct comparison of the two methods

is therefore difficult; such comparison should be based on the final numerical

results.

~(|

OUTER EXPANSION INNER EXPANSION
‘i::éw(") +/a£0,(x) "/‘/Lt/(X) £~=T+,a_z‘: + 7
® \/.:,/o/ﬁé(x) + Y, (X) Y =¥ + o (t-T)

Figure 2 GEOMETRY OF MATCHING

The matching is performed by evaluating the outer expansion at X' = |
- and equating the result term by term to the inner expansion evaluated at

X = —2<, both expansions being expressed in the inner variable. (The

important thing is that both expansions are expressed in the same variable;

279



the present choice of inner variable is simply for the sake of convenience.)
The part of the outer expansion identified with f_“_. is evaluated near

X = | by writing two terms of its Taylor expansion at \ =] :

£ o(x) = 4,00 + /x—/)ép; O)=f (1) + (x=1) (L

using equ. (16). The inner variable is introduced by X = //_\T + Co /i— - T)
from equ. (3), and if it is assumed that (?‘: - T) is small (as it will be ‘

shown to be), there results

£ox) — Lo 04 [i ZL’LQL (+ —7“)%4’32 (23)

The introduction of the inner variable into the expression for £/
(equ. 19) is taken care of by putting (/'—)()‘ = //LSZ , the term cos (f ‘T)
in equ. (3) being put equal to unity with enough accuracy since f/ is multi-
plied by/u. . By combining equs. (7), (9), (19) and (23), the outer expan-

sion evaluated near X =/ and expressed in the inner variable is thus
%) = éc(/) +/¢¢>?ZL—/~ L(e-7)P
] ' 2 “7 - ”
+ /4{4 () + //%ZL‘) Z[Z%ﬂx)vy&j,&] + /y (/)}(24)

From equ. (3) and (22) follows for the inner expansion evaluated at X == _ o ‘
/- = -/ | -/ - rl /ﬁ
£(5)= 7—+Z“+/LL[>< L2 AL, fd?/f%/-x)
e ‘

£ a %A/%Z{ S (25)

Now, if the phase angle ] is chosen to be composed of several parts
according to powers of /u/ as follows,
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-

T=T w20+ ]

(26)

the third term in equ. (24) is to first order in/{.u , _._//¢7— Zé
and the two expressions for £ (Y) can be made identical by making the
following choices for 7; , U’/ , and T

= 2,0

U, = U

/

(27)

" L (28)
T = — 4 7/7 -/LZ[/‘“ + 4 /leé -2 () -

_{/f/é’> %/4—— Y (r) - /5714 # ﬁ./’é«-zz_% }Z

(29)

- -1/ _—
Note that this implies that // f/,[/ l) - @ ; this will be confirmed
by the matching of the expansions for \/
From equ. (8), (20) and (3) follow for the outer expansion of y

evaluated near X =/ and expressed in the inner variable ¥

3

/(7():/4///7{/2 /50) f/a[(/f@&)dz[j‘;? (,)?)/-,47,&&)% n((ﬂ’)] (30)

Since the Keplerian part of this expression is multiplied with ,a,l/z, its
value near X = 1is obtained simply by substituting X=/ ; no Taylor expan-
sion need be used here because the second term would be proportional to
#3/2.

From equ. (3) and the expression for the inner expansion, equ. (21)

follows for the inner expansion evaluated near X = — o,
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y/i):,u[%— X — /\,] + (t-T) »

where it is again assumed that (£-7) is small, so that ,Cu"!/ (ﬁ - 7-) = (i 'T) .
This assumption is shown to be valid (at least to order _AC-) by equ. (25) and
(29). If then the expression for {;()?) near X =/ (equ. (25)), and the evalu-
ation of T (equ. (29)), which followed from the matching of the expressions

for the time, are used, there follows for 7 (x), .

7’(x)—- -/(a // + lé[u x__/( + 7l 5/ /x)
//f—/L) /Z*j/o/-” //) J /(, 7:-)/(4 7‘] (31)

The expressions (30) and (31) are made identical by the following choice

of the constants ’,L s V' s K and ]' .
, 1
2

=~ (4 o) (32)
-/ (33)

LT )T # A=)

7: = N\\\{
i

(34)

7; is arbitrary ’ ‘
-/
= 2
The result V’ = —/ confirms the expression 4 = (/f/{/ ) " which
was necessary for the time- matching since for the moon centered hyperbola

7 = ! )/ - LZ = With equs. (28), (33) and (34) the moon
=27 = (77 ) .

centered hyperbola is now determined, the constants //; //, /9 and

//

P

being expressed as
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Xy
-
1\

JFUS = 52,
Z=KU

p o= I //u?—)%
7=kt (1102

(35)

These four constants are really equivalent to three integrals because
/?Zf-//i 22l A +/
so that a fourth integral ;s still needed. This is provided by the condition
that Z=—" 0 at perilune. This condition is satisfied by the proper choice of
the phase angle | and the origin of the inner variable Z which are
determined by equ. (27) for 7; , equ. (32) for 7/{:_ , and equ. (29) for Z .

The constant A which is needed in equ. (29) is simply

oK —_

It is a fortunate circumstance that "}"' , the part of the phase angle | which

is proportional to /¢ , is‘arbitrary. 7 influences , and thereby the
prop Y. 4 /

angular momentum ,Z =A7[[’ . With the hyperbola's total energy deter-
mined by ZZ/ » the perilune distance can thus be adjusted by changing the
angular momentum through 7/- .

It may now be noted that the phase angle | (apart from the arbitrary
contribution %7; ) and two of the hyperbolic constants depend only on the

Keplerian part of the outbound trajectory. As a matter of fact, Lagerstrom

A

and Kevorkian derived 7; and T, in the very beginning of their analysis
2.
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and on the basis of the outbound Kepler trajectory alone. For the purpose

of this presentation of their analysis it was felt that the modification in which

7; and 7; are derived from the matching conditions is a little more in
2.

line with the general principle of the method of singular perturbations; this

principle being the determination of certain constants, which leave the inner

and outer expansions indeterminate, from matching conditions.

Furthermore, it is noted that the first order corrections of fhe outbound
trajectory enter into the matching conditions only through the functions 3’//")
(in the determination of T ) and /O((/‘)" )///5)) (in the determination of

K‘ ). The functions Y and fj become unbounded as ,/a__——; |, i.e. for
minimum energy trajectories, but the difference <O(——Y) was shown to be
finite (ref. 11). The difference [S— X] may be interpreted as the correction
of K‘ , required if k' were determined on the basis of the Keplerian
trajectory alone. Since l(. is the SI -intercept of the approach asymptote
of the moon-eentered hyperbola at X = | , it has been claimed that (¢(— Y)
is a measure of the error made in the usual methods of ""patched-conic"
computations; (o(— X) is then simply the mi’s s-distance of the approach
trajectory. Because of the basis difference in the two methods (which has
been pointed out earlier in this report: patching conics is geometric, while
matching inner and outer expansions is analytic) a comparison on the basis
of (;r(" 2() tends to come out unfair for the patched-conic method. It
would be interesting to see how the corrections f/ and \/, contribute to the

outbound trajectory near its intersection with the moon's sphere of influence.
J y P
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And if a thorough comparison of the two methods were desired, it should of

L

course be based on final numerical results for representative trajectories
computed by both methods. Lagerstrom and Kevorkian themselves have not
provided such a comparison, except by pointing out that (-'J-— )/) is a measure
of the patched conic error; in ref. 5 there are comparisons with exact (i. e.
numerically integrated) trajectories, but whether or not the results say much
for the two-variable expansion method depends mostly on what kind of errors
one is willing to except.

3.6 The Composite Solution

R The outer and inner solutions have been formulated and their singular
behavior has been identified. By matching these two solutions in their over-

- lapping region of validity the phase angle and the constants of the moon
centered hyperbola have been determined. To complete the work a composite
solution must be formulated. According to the singular perturbation theory
the composite solution is obtained By adding the outer and inner solutions
and subtracting their common part. That common part is just the inner
solution evaluated in the outer region (that is for at X —> — o), or the

‘ outer solution evaluated in the inner region (that is for X —> | ); these

.. two evaluations are identical because that was just the condition for matching,
Here it is convenient to use the inner solution evaluated for >?~———> _—,

- According to equ. (8) the outer solution is

7 1) = Py x ) ey ()

where 7/} and X are known functions, y exhibiting a singularity for x--» /.
2
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According to equ. (3) the inner solution is

)’(X//zé):: )Zm —/—/Ly (%)

P

where the moon Coordlnate %7/ ,,'<?,(/,'g, ( )’ X -_— ) / 2
with 2’,)” = (& (i ; ) and >/<X) iS the equa.tion of the moon-centered

hyperbola. According to equ. (3) and (21), the inner solution evaluated for

X —> — o is

7(")()%); Oo:)?m a 7 (X)

__'9__

w, A,

The composite solution for \/ is thus

y () = Y, 0 ) sy 0 4§ R) = o (O ]

and in the same way the composite solution for £ (X/,w) is found to be

(X w)=t, (1) t 1 ¢, (x) +,a,[t-(f) ~/,4(,7)] (36)

1

- < - -3 —ax
where 3 (X) = AL a Lb—? ——e (37)
y (L, T a5z

|

If analytical expressions for ﬁ/ (X) and YI (x) were available it would
be observed that their singularities are cancelled by the singularities of the
expressions in square brackets; this is for instance the case in the analysis
for the two-fixed center problem (ref. 3). In the absence of analytic expres-
sions for 'l, and y' , the singularities must cancel numerically. Now, to

determine just the geometry of the moon centered hyperbola (determined by
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the constants in equ. (35), the functions il and \/‘ themselves are not
needed, only the function (n(' )’) is. ((g - Y) depends on the initial con-
dition -—/)zonly and can be computedrand tabulated once and for all. However,
if the time-dependency and the entire trajectory is needed, the functions ¢,
and 7" , as well as the expressions in the square brackets of equs. (36) and
(37) must be computed and their singularities made to cancel numerically;

this may be expected to cause some numerical difficulties.
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4, THE OUTER EXPANSION IN ROTATING COORDINATES

In the previous section it was shown that the application of singular
perturbation theory results in a uniformly valid solution to first order of
for a certain class of trajectories in the restricted three body problem. In
principle this is a satisfactory solution, but practically there are some
difficulties because this solution is left in terms of quadratures which must
be numerically integrated. Furthermore, since the formulation was carried
out in a non-rotating coordinate system one may ask whether a formulation
in a different coordinate system would be more advantageous.

Therefore, in conclusion, the following items are cited as possibly
leading to improvements or analytical simplifications for this type of first
order solution:

1) to obtain analytical approximations for the quadratures which
depend on some parameter of the zero-order ellipse (in this case the energy);

2) to represent the problem in a rotating coordinate system as a third
order system of differential equations by making use of the Jacobi Integral.

An investigation of the second recommendation has .been initiated and
in what follows the results for the outer solution are outlined in terms of
quadratures. As a result of this investigation it was found that in addition
to the choice of a rotating frame of reference the choice of polar coordinates
was a decided advantage for the following reasons:

1) The solution for time is obtained from the first order differential

equation provided by the Jacobi Integral;
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2) The occurrence of elliptical integrals in the zero-order solution for
the time is avoided when the radius is used as independent variable;

3) A solution in polar coordinates readily lends itself to extension to
three dimensions.

The details of this analysis follow.



In the planar restricted three body problem assume a non-rotating
earth-centered coordinate system with axes X, Y parallel to some inertial
axes and let the earth-moon distance equal 1 while the masses of the earth
and moon are l- . and.«c respectively and the gravitational constant k%=1,

The Lagrangian for a massless particle at (x,y) is from Reference 7:

_ 1 . 1-
L'E(x2+y2)+—%— + 4 . b (x cost+ysint) (38)

T2
In this system the moon rotates with angular velocity &« =1 and the

transformation to a rotating coordinate system X*, Y* with the moon at unit

distance on the X* axis is:

x¥ = x cos t + ysin t
(39)
y* = -x sin t +ycost
where in polar coordinates relative to the rotating coordinate system:
x%* = r cos 0%
(40)
y* = r sin 8%
and r = r*, The Lagrangian in relative polar coordinates
becomes:
ot 1 . ® o * sk - ot
L¥ = = [r2+(re"‘)2] vty LA 4 L rcos 0F (a1
2 r r,
2
1/2 % 1/2
where: r, = [1 + r2 - 2r cos 9] _/ = (r- 1)2 - ™)
r

Since L™ is time independent there exists an integral of the equations of
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motion known as the Jacobi integral which is equal to the Jacobi Constant C'

for the relative energy. Thus the expression for the relative velocity becomes:

2 + r2 (052 = £2 4 2“;/“) + Zr/;: -2 4 r cos 8% - C' (42)

An asymptotic series solution of the following form is to be obtained:

t=t (r)+ 4 tj(r) +0 (.11-2)

' (43)
0" = 0% (r) + ¢ 8] (r) + 0 (K2

where i .01. The zero order solution is a two body ellipse relative to

the earth with elements a and b, e, i, w', S, 7T and constant angular
momentum /o and energy h,. It will be assumed that the initial conditions
are taken at the perigee. Then the solution for £ is essentially a first order
approximation to a ""Kepler's Equation" for a special class of lunar trajectories
in the planar restricted three body problem and t, is exactly Kepler's equation

for the two body problem:

cos'l(a'r)-e ‘/1-(a'r)2 (44)

a(l-ez) -r
T e Y

where Wi is an initial phase angle between the semi major axis and the x*

axis. Such a zero order solution is valid since Lagerstrom and Kevorkian,

Ref. 4, have shown that within a small neighborhood of the earth of 0 (/uf‘ )
1+ 3o

the motion is Keplerian up to order . Hereafter the subscript zero
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refers to values for the zero order solution and the subscript i refers to the
initial conditions.
The Lagrange equation [L] 0" 0 provides the following expression

for the change in the total angular momentum:

d . - r sin 9* s
— (rlg% 48y = p| — o — *tr sin 8~
dt ) (r2) 3 (45)
Integrating for a first order approximation gives:
r P
. -r sin 60 e dt
r29'+r2-joz/u T——3—+rsin9c‘) —c-l?odr
2(o)
(46)

Clearly the integrand in equ. (46) is expressible as a function of r through
eqs. (44). However due to the transcendental nature of the resulting expression
for the integrand an analytical integration cannot be obtained directly. Instead
an approximation for the integral dependent on certain parameters of the zero
order solution can be determined and exercising choice as to the form of the
approximation will allow some simplification of the solution for t. Now 6"

becomes:

6% ¢ uel= 5o -1+ W P(r) (47)

where the approximation for the integral has been incorporated in P (r).
Now the Jacobi Integral, equ. (42) provides a first order differential

equation for t after substituting for 0%:
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2 rZ
t =
(Z)) +Z/,Lt(')t'l

*

1
T2(0)

L, -%c)r2+201-p)r -Zg +2 12 <

P(r) (r¢ - [o) - A -rcos 60> (48)

and

| : d

O: .
\/ (2 fo- 2¢)r2 4 2(1 - ;) r - 42

o]

where 2C =2 ( /0 - hy) is the energy constant for a two body orbit relative

to a rotating reference frame and A = ! - 2C. Note that in equ. (48) both

and P(r) become unbounded as r, ———> 0; however, the combination
of these terms should remain bounded insuring that % is bounded near the
moon.

Similarly o™ is obtained from equ. (48):

s ! %! /Q ' ' ’ZO

o ! !
eo +.u0] = > tg -t +//._1_2__t1+ A P(r) tg (49)
r
. where again the prime denotes differentiation with re spect to r.

This completes the outline of the outer solution. A similar investi-

gation of the inner solution and the results of matching the solutions will be

final deciding factors in the determination of the practicality of this approach.

‘o
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5. CONCLUSION

Interpreting the restricted three body problem as a singular perturbation
problem results in a uniformly valid solution to first order in the small parameter
A for earth-moon trajectories. This solution can be thought of as being com-
posed of an ''outer solution, ' valid near the earth and an "'inner solution, ' valid
near the moon. The éuter and inner solutions are matched in their common
region of validity by determining certain constants (i. e. the initial phase angle ‘
of the moon and the elements of the moon-centered hyperbola) in such a way
that the singularities which appear in the inner and outer solution vanish in
the construction of the composite solution. The matching constants are ex-
pressed in terms of the initial conditions, with the exception of a-part of
order 4 in the phase angle which can be chosen arbitrarily and can thus be
used to adjust the lunar perigee distance.

It has been shown that the outer solution must necessarily contain a
part that is proportional to the small parameter & in order to make the
match with the inner solution possible. A posteriori this conclusion could
have been anticipated from a consideration of the order of magnitude of the
angular momenta of inner and outer solutions. The need for this first order

®
correction to the earth-centered outbound ellipse seems to explain why the
usual patched conic methods (in which such a correction is not made) must
be inaccurate. But such a statement must be made with some care, since
in the two methods the matching is performed on a very different basis. In

the two-variable expansion method the outer solution is evaluated at the
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moon's distance and equated to the inner solution evaluated far away from
the moon, but far away in terms of the '""blown-up' inner variable. Although
this procedure makes good sense analytically, it is hard to see what it means
geometrically. On the other hand, in the patched-conic method the earth
centered ellipse (an uncorrected outer solution) is evaluated at the sphere

of influence of the moon and equated to the moon centered hyperbola (the
inner solution, but in physical variables) at that point. To make a sound
comparison of the two methods, it should be based on the final numerical
results, or at least one should determine how much the first order correction
of the outer solution contributes to the Kepler ellipse up to the moon's sphere
of influence.

The composite solutions, in particular the first order correction, is
left in the form of quadratures for which no analytic expressions has been
found yet. Therefore, although in theory the singularities of outer and inner so
solutions cancel, the singularities must be evaluated numerically. This will
cause numerical problems if the entire trajectory is to be known as a function
of the time. On the other hand, if it is sufficient to just know the elements
of the moon centered hyperbola, the quadratures need not be evaluated entirely.
Only the parts of the first order correction indicated by )’(/o) and o((f))
are required, and in particular their difference (Or" 7’) . The.se functions
depend only on the total energy -—ﬁz' and can be evaluated once and for
all for any interesting range of energies. There is an additional difficulty

since 0( and ) tend to infinity for minimum energy trajectories, but even
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there the difference (0{— X) remains finite.

These difficulties may limit somewhat the practicality of the methods
depending on how much trouble one would want to go through to write a com-
puter program that evaluates the quadratures. Even so the method is of
great interest and a similar development may be attempted along some

different approach. Such a different approach is given in Section 4.
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DEFINITION OF SYMBOLS

Time

True anomaly

Position vector

|R | = magnitude of R
Gravitational constant

Angular momentum vector
E'ccentricity vector

GxP

Unit vector in direction of x axis
Unit vector in direction of y axis
Unit vector in direction of z axis
Eccentricity ,

IG |

P

Q|

Time of perigee passage
Semimajor axis

Mean motion

Coefficient of second harmonic of the potential due to the oblateness

of the earth
2
3p, K2

4
g




B (2R (Y

(r,0) Polar coordinate system introduced in x-y plane
SUBSCRIPTS

1,2,3 1st, 2nd, 3rd component of a vector

o} Initial value

S Short periodic

£ Long periodic

SUPERSCRIPTS

b Differentiation with respect to time

Differentiation with respect to true anomaly
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REPUBLIC AVIATION CORPORATION
Farmingdale, L.I., N. Y.

APPLICATION OF VARIATION OF PARAMETERS
TO THE POLAR OBLATENESS PROBLEM

By

John Morrison

Henry Weinberg

SUMMARY

This report presents the derivation of a set of two body parameters and
their associated perturbation equations. These equations are applied to the
polar oblateness problem characterized by the second spherical harmonic. A
modified Poisson method is used to obtain the first order solution to the problem.
The modification of the method is introduced in order to eliminate the occurrence
of secular terms which, because of the parameters employed, would have caused
a rapid deterioration of the solution. The approximate solution is expressed as
a function of true anomaly. Some analysis of second order theory is presented

which suggests that difficulties with particular initial conditions may be avoided.

INTRODUCTION
Among the numerous froublesome aspects which one encounters in attempt-

ing to integrate the perturbation equations for the polar oblateness problem, two

difficulties may occur which appear to be subject to, at least some amelioration.
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In general, there are two decisions one must make before these difficulties be-
come apparent. These decisions consist of selecting a set of parameters and a
method of integrating the perturbation equations. The possible sets of two-body
parameters may be divided into two groups, one of which contains canonical
parameters and one which does not. Two methods of integration, in general
use, are Poisson's method (1) and Von Zeipel's method (2). The latter method
is applied only to canonical parameters. In most instances, regardless of the
set of two-body parameters or method of integration employed, the results
present two interesting properties. The first is the occurrence of terms in the
approximate solution which show a secular growth. The second is the presence
of singularities in the second order corrections for certain initial conditions of
the parameters. The first property is not, in general, objectionable since the
secular terms usually appear in the expressions for angle parameters. How-
ever, for some parameters, such as the unit perigee vector, the occurrence of
secular terms destroys the unit characteristic and limits the applicability of

the results to relatively short time intervals.

1t is proposed in this report to derive a set of parameters and their as-
sociated perturbation equations which, when applied to the polar oblateness
problem, yield, after approximate integration, equations for the parameters
which manifest no secular growth to the first order, except for one element.
A brief analysis of the structure of the second order perturbation equations is

developed which suggests that the occurrence of singularities arising from

initial conditions is not a necessary concomitant of the polar oblateness problem.

The application of second order theory, however, will not be attempted in this
report, because the parameters which have been chosen degenerate for nearly
circular orbits. Even though the set of parameters employed is defective, the
comparative simplicity of the perturbation equations recommends the use of
these parameters for a clearer insight into the particular difficulties which their
use is intended to eliminate. It should be noted that the degeneracy of the para-
meters for nearly circular orbits is not a case of replacihg one difficulty with
another, but is simply a consequence of the choice of parameters and not of the
integration technique. A more judicious choice of parameters has been made
and an improved integration technique developed which eliminates the imper-
fections in the present method. A report is now in preparation which incor-
porates these developments.
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DERIVATION OF A SET OF PARAMETERS FOR THE KEPLER PROBLEM
To specify the solution of the vector equation

+

LR
=
4w
Il
o

(1)

]

six independent parameters are needed. For the purposes of this report, the

following set will be used:

o, the time of perigee passage;
P, the eccentricity vector;

Q, a vector perpendicular to P and lying in the plane of motion.

At first glance it would appear that this set contains seven independent
elements; but, since P and Q are mutually orthogonal, any one component may
be expressed as a function of the remaining five. The vectors P and Q may be
obtained from Eq. (1) in the following manner: Take the cross product of R and

Eq. (1)

RxR=0 (2)

|~

Integration of Eq. (2) gives

RxR=G (3)
in which G is the constant angular momentum vector. Now take the cross
product of Eq. (1) and G

. uR

RxG+-xG=0 (4) §
r |

After expanding R x G using Eq. (3) and recalling that G is constant, Eq. (4)
integrates to

: pR
RxG-—=P (5)
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in which P is a constant vector. To find the magnitude and direction of P

rewrite Eq. (5) in the form

p-r(R-R-4)-R@' B ©)

Evaluating Eq. (6) at perigee yields

P=U pe (7)
P=U ¢

where
e is the eccentricity of the orbit
and I_J'p is a unit vector in the direction of perigee. Let Q be defined by

@=GxP=-LRrxG+Re’ (8)

The magnitudes of g, P,and Q are g, p = pe, and q = gp, respectively.

Since R, P,and Q are coplanar, R may be expressed as a linear combina-
tion of P and Q

E=011_13+062§ (9)

The scalar product of Eq. (9) with P yields

R-P reost
p
where f is the true anomaly of R. Similarly,
R-Q rsinf
0y === =52 (11)
q
R may be written as
R=8,P+&,Q (12)
Making use of the well known formulas
2
T g (13)

=u,(l+ecosf)
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L

f= % (14)
r

it follows that

— _usinf (15)
1 gp

y =etcosf

1
2 gq H (16)

PERTURBATION EQUATIONS

After having obtained a set of parameters the first step in deriving the
perturbation equations is to introduce the perturbing force F on the R.H. S, of
Eq. (1) which gives

- uR

B+T‘—'£ (17)
r

The perturbing force F will cause R to deviate from the Keplerian orbit, and a
new solution must be found. This solution can also be put in the form of

Eq. (9), but now the parameters G, Pand Q will be functions of time. In order
to determine the time dependences, it will be necessary to obtain the differ-
ential equations for the parameters in so far as they depend on the perturbing
force F.

Differentiation of Eq. (3) gives

G=RxR (18)
Substitution of Eq. (17) yields

G=RxF (19)
*Similarly, differentiation of Eq. (5) gives

- .o . L] R x G

P=RxG+RxG+yp=g= (20)

r
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Substituting for G and R yields

P=FxG+Rx ®xE) @1
From Egs. (8), (19) and (21), Q is given by

Q=LRx®xF)+Fg +2RG" O 2)

The equation for the variation of o, the time of perigee passage, is deriv-

ed from Kepler's equation, which, for 0 <e <1, takes the form

Chee b2

n(t—cr)=tan “e+cosf 1+ e cosf (23)
- - 2
where n = 3 and g =,/+ pa (1-e7).
+a
For e > 1, Kepler's equation is given by
/2 e
n(t-o)=tanh lsinf e Lt _ginfSie -1 23")

e+cosf l1+ecosft
where n = \/JJ_TB; and g = J —,,ua.(e2 -1). Using various identities, Eqgs. (23) may
-a

be put in the following form

-1 R-R R-R
n(t-0)="tan r_z -3 (24)
(1--)a™mn a n
a
-1 R.R R-R
n (t - o) = tanh - (24")

(1 ——E—) azn az n

Differentiation of these equations with respect to time, and substitution of
Eq. (17) for R gives, in either case

{ 32 Rt - 0)+—R+-p—-L(1 ) R - _)R——P]} (25)
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‘e

where

1_R-R 2
“a “r
and
.. 2
a=r-F (2)
= =N

It is convenient to have available th

Differentiating the expression

it follows that

- :R_R;
- (sinf) f = F="5F
r

P
s =+
p

and therefore

2

£ =28 _
1’2 9

o limg

e total time derivative of true anomaly.

(26)
R (P
FRANY 27)
(28)

APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

In this report, the polar oblateness problem will be assumed to be char-

acterized by the perturbing potential

0=52 (1-0%)
r T

(29)

In order to apply the perturbation equations, previously presented, to this

problem, it is necessary to specify the p
gradient of the perturbing potential &.

erturbing force F. This force is the
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E—_-_.3::(,5K2 {[1_5?1_._22%13+ 2z1_<} (30)

The procedure for applying the perturbation equations may be outlined as follows:

(a) Reexpress the perturbation equations in terms of the parameters
P, Q, and G, and true anomaly, f, by substituting Eqs. (9), (12),
and (30) for R, R, and F, respectively.

(b) Since the resulting equations are functions of true anomaly, it is
legitimate to take f = g/’ r2, for a first order approximation. It
follows that the differential equations with respect to time may be
transformed to differential equations with respect to true anomaly.

(c) These perturbation equations are now written as Fourier polynomials.
Terms with constant coefficients are transposed to the L. H. S.

(d) To obtain a first order solution for the system of equations derived
in (c), all parameters on the R.H.S. and the parameter g, wherever
it occurs, are held constant. Under these conditions, the system
can be solved exactly.

(¢) The perturbation equation for the parameter o is treated similarly
with some modifications.

Carrying out the operations indicated in (a), (b), and (c) the results are:

3,_;1{2 . 2 2 Q 2
- kl 3. (e_ . e . 3 (e
{|_p<"—2 sm3f+esm2f+zsmf ——q <2 cos 3 £

(31)

2 pr- P2, .2
- _e” =|<3> 5e” _. 3e _.
+ecos2f 2'COSf>],+pL > —-16sm5f+2s1n4f

7 156>

2 P.Q 2
. . 7, 5 - 37305
+(71+_1F) sin3f+3esin2f+(z+ —%—)smf)-—ﬁ—C—se cos 51{

1
+3ecos4f+(%+—8§e2)cos3f+4ecost+(%+;Zie2)cosf>
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Q

7

2
—<El-§> <51% sin5f+§2§sin4f+('£ 11: —=—)sin3f+esin2f

+( ) lnf> ( Sin3f+esin2f+(1+9;)sinf>]

8

Q“(s)(se 3e 7,17 2
+-d-‘_— - Té—cos5f+—2—cos4f+(z 16e)cos3f+3ecoszf

PGB e ) (B (o rs Beomace G 3 om

9e2

P Q3 5e
5 cos f> <—— sin 5f + 3e sin 4f+(2+3e )sin 3f

+ecos2f—(%

2 2 2
+ 4e sin 2f+(‘;— - %) sin f>+<% cos 3f+ecos2f +(1+ §Z—) cos f)]}

(31) cont'd
3 2 2
3“Kze{ (3 g_[5P3 L3 (1,8 53 Q3}
T3 Y I R A R e B i a
g p q
_3“3Kz { [ ( 3¢2 > <
—-?— k 3~ cos 3f+e cos 2f+--— cosf Tz—sm3f

2 P -~ P, 2 2
+esin2f+;—sinf>_]+% ] <F3-> <§12§' c:osSf+37e cos4 f

w (% igez)cos3f+4ecos2f+(4 25 2)cosf> ( % /ée_ cos5f

3e 7 5e 2
+2cos4f+(4+—1—)cos3f—( +-e)cosf> q <—5zisin5f
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+3esm4f+(2+3e)sm3f+4esm2f+(———)smf> <——cos3f

2 Qr
+ecos2f+(1+§——)cosf E—l_( <— sin 5f+?—’2-e-s1n4f
312 13e ( >
+(4 )s1n3f+5es1n2f+(4+——) f> s1n5f
L3 11e2 .
esm4f+( )sm3f+esm2f+(——— )sinf>
2 i
P.Q
_33 5e cosb5f+3ecos 4f+ (5 +2—1e)cos3f+6ecos2f
P Q 8 2 8
2 2 2
+(% 3e )cosf> k—-s1n3f+esm2f+(1+?—’——-)smf]} (31) cont'd
3“2K2 PP Q9
G'+ {:—-——+-=-——}xk
= 3 pp qa g -
g
3u2K2 prP Q
= :-—~_3_<9 §.e.. ._3_/6 i i
g3 {p |_p 2cosSf+cost+ 5 cosf>+ q \ésm3f+sm2f

P
e . Q 3 <
+—smf>]+,——q l:—p—<§ sin 3 f + sm2f+-2-smf)+— - Scos3f-cos2 f
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Consider the system of homogeneous equations obtained by setting the
R.H.S. of Egs. (31) equal to zero.

s

2 Q 2 2
,_3“ szz{stz _ﬂﬁaQsz STA3 3% +§Q31& _1]}=0
=) g4 - q, p, P, 9, g, 2 p2 2
. 2 L
2 2 2
¢ 3p Kyq, Py, Br5Py 39 9, Pgy Wy
Q -k +—=| 5 5—+5—-1|+—= == =0 (32)
=7 4 - p 2 2 22 q
g, )3 J3 P

It will become apparent that P P Q 2 and G 2 represent the long periodic
terms of P, Q, and G, respectively.

For this system of equations, Eq. (8), Q P G 2 X gz still holds. Since

2 = [ 2 = o 2 = .
. p,=F,F ,59," 9, €,%9," G,
. It follows from Eqgs. (32) that
P
7 —4 '
P = o E =0
2 pz 2
q/ - Qﬂ

Therefore, for this system of equations, p X q 2 and g . are constant.
Similarly,

P P, Q Q !
3 < 3¢ | 3z< 32) -0 (34)
P, ~P, 9% ~ 9,
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so that

(2 () - @

is constant.

Using the identity

K (36)
8y Pp 4y LB
it follows that
PP Q,Q Q G P, G P Qg
1’ 3£’+_&—3.&>xk=<__&xl—3—z+lx_’€.ﬁ Xl_{
p,p, 9, 9, @, "8, p, 8 P, q
(37)
OB %Py Sy,
gy b, 9, a, Pz gz - g
Therefore, Egs. (32), can be rewritten as
P G, Q Q
r e =
B/£+Ap£i—§'-e-EX-—&——&<1—§B>—1{_-———3£}=0
P, g, 9 9
Q G, P ~ P
@, +aq{Zrx -2 B-Drkgd}=0 (38)
9 - & P, Py

G G
32 £
G’ + Ag {———k _...}=()

3u’K,
1
)

where A =

The third components of _1_3'2, _Q'z, and g’z are
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P, Ap£Q3I’<zB 2) 0

stqu P, (2--13) 0 (39)

'
G31,_0

which form a system of first order, linear, homogeneous differential equations

with constant coefficients. The solution is
- -0} -ay,on a5 5o )4
P,, P3ocos{A(zB 2>f Qg, sin A(zB 2)f

Qg = Py sin {AC%B ~2)f}+ Qg cos {A(%B -2)ff  (40)

Gg,= C30

where P3o’ Q3o’ and G30 are initial conditions. Similarly, the first two com-
ponents of G’ are

G
.o 238 _
G 1 A Cos g, 0
(41)
G
' ——3& -_—
G 2 + A Glz = 0
£
This system has the solution
G1£=Glocos< f>+G sm(A >
G21, = - G sm <A f3+ G o €08 <A > (42)

where G10 and G20 are initial conditions. Using the identities,
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Gy,G3 _ Py Py 9, 9,
g, & p, p, 9, 9
GoyCsy_ PoyP3y Ry Uy

g, & p, P, 9 9

Egs. (41) may be transformed into

zz 3;& sz Q3z} -0

I +A
p Pz f,

{ 1y 315 le 31&}_0

Egs. (44) together with the identities

Gy, Poy Uy Py %

1g _ £
g, P, 4 P9
Gy, _P3e Yy Puy Uy

g, P, q, p, a,

determine the remaining components of P and @ which are

12 AB{ 3z/ 2;&) Gy Qsz}

GuQsz 3/&( u
RIS

2£ “AB

'
= w3 A CGop Pay Q3z (Gzz\ }
¢y AB gz pz g ./

Qy = AB{ AGM 32‘ 32( >}
&

Qy
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(43)

(44) .
1
1

(45)

(46)
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All quantities appearing on the R.H.S. of Egs. (46) are known. After

some algebraic manipulation, the 'solution for the system of Egs. (32) may be

expressed as

—

where

and

To find the particular solution of Eqs. (31), assume a solution of the form

cC o0

cos A @ B—2> f1

sin A@ B—2>f I

sin A 24§

cosA—ﬂf

—si11A<gB—2>fI

cos A (g B—2> f1

(=}

L]

(47) where 1’0, Qo’ and go are functions of f. Substituting solution (47) into

the L.H.S. of Egs.(31) will yield three equations for _I_’o', Qo’ , and go’.

After solving for these derivatives, and recalling condition (d), _I_’o, Qo’ and

go may then be found by integration alone. If the second order terms in this
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solution are neglected, the results are equivalent to integrating the R.H.S. of
Eqgs. (31) and adding the results to solution (47). The first order solution for
P, Q; G, is

I
i
Ig
+
1
I

H'o

(48)

1o
I
o
|
Hs

|-b

where P Q » G g are the integrals of the R.H.S. of Egs. (31), and the
quantltles in brackets are to be evaluated between the limits f and f

g:

IQ
ICD

f

In the perturbation equation for o, Eq. (25) it may be noted that

_ ;. p-d2
R-F=-3%  R-F=ig

If the parameters a and ¢ are held constant at their initial values

3a . a R
d 0 o—=1 .
(- Zeop-0}- {-_R(t R e N
Therefore, Eq. (25) may be rewritten in the form
3a
at 0+—I_J-—(I>(t 0')
a 2 L] L]
=p—2{(1.—e>@'§>5—§£}-£ (50)

Differentiation with respect to time is transformed to differentiation with

respect to true anomaly, and the R.H.S. is expressed as a Fourier polynomial.

The result is
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d::i c+—3i—<1>(t 0)} o Ka{ ( 3) ~-‘-—-cossf

2
+§2£cos4f+ 5e 4>cos3f+-——cos2f+ -5-—5£-Z>co f]

Q.2
+<-£> [5{3 cos5f+%cos4f+ 1 - 16 2>c0s3f

P Q3 5e2

2 ~
3e e _7 3 3|5 . - si
-3 cos2f+\8 -4>cosf] P 4q l_ 8 sin 5§ 2s1n4f (51)

2

"3 3 5" Z)
e 1 3 3| 5e _€ Vs
+ 8 "% cosf;’-p 1 !_8 5f-§sm41‘+—2 5 sin3f

2 o2
+3esin2f-<gz—-+%>sin.f]+[_94— cos 3f+ecos2f

+ (- enst ]}

Holding the parameters on the R.H,S. constant, Eq. (51) is integrated to
yield

- 3a &
0=0,+| 0 -

(t-o) ] (52)

0

where Oy is the integral of the second member of Eq. (51).

CONCLUSION

The solution (47) obtained has f appearing in arguments of sines and
cosines, these terms having two essentially different periods: 2m/j (short
period where j is a natural number), and 2m/A (long period where A is a
small quantity and equals 3u2K2/g4). The solution is well behaved for all
values of f because f appears in arguments of sines and cosines and because
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these functions are found only in the numerator. This would not be the case if
Egs. (31) were integrated keeping all parameters constant; for then, the long
periodic terms in the previous solution would be replaced by their first order

approximations. This solution would grow linearly with time.

The next step in the usual procedure for deriving the second order
approximation consists in substituting the first order solution for the parameters
*in Egs. (31). Before this step can be carried out, however it should be recall-
ed that Eqs. (31) were obtained by putting dt/df =r / g. If higher order solutions
are to be found, this approximation is no longer valid. Therefore, for a second
order approximation, dt/df must be replaced by its first order approximation
derived from Eq. (28).

Now suppose the parameters are replaced by their first order solutions,
terms of order K23 are neglected, and products of trigonometric functions are
replaced by trigonometric functions of sums. Under the following conditions,
the resulting equations may be integrated to give a well behaved second order

solution:

(a) No constant terms are present

() Whenever cos af or sin of occurs (o a small quantity), o must
also appear as a factor in the numerator.

If these conditions are not fulfilled, and the equations are integrated,
f may occur outside trigonometric functions, or small divisors may be present.

A possible solution to these difficulties is obtained as follows:

(a) Denote the short periodic terms of the first order solution of
P, Q,Gby P (B, @, D), Q (B Qp» Dy Gy (Bys Q) and
assume a solution of the form P = —13£+Es (EZ’ 9,6’ f), Q= 91,
+ QS @z’ 92’ f)’ g =gf/ + gS (Ez’ 92’ f) Ez’ Qz’ gf, are new
variables which, to first order, are equivalent to solution (47).

(b)  Substitute these expressions into both sides of Eqs. (31) as
modified in accordance with the qualification regardmg dt/df
mentioned above. Neglect terms of order K2 ; expand into

Fourier polynomials, and neglect terms multiplied by sines
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and cosines. P 0 Q 0 g}z are determined from the resulting equations.

Investigations are currently being pursued for the purpose of finding the

second order solution by this method.

. APPENDIX

EXAMPLE OF RAPIDLY VARYING PARAMETERS

Whenever perturbation equations for a set of parameters are solved employ-
. ing an approximate integration method, it is always desirable that the parameters
be slowly varying. It is likely that, for the polar oblateness problem, no set of
parameters exist in which all elements possess this characteristic. An example
is presented to demonstrate the existence of rapidly varying parameters for the

polar oblateness problem. Consider the equation

. 3’J,K2 - 2
' - 2 [T iad]
z + 3 5 L 1-5 5 )2+ 2z
r T r
. which is obtained by taking the scalar product of Eq. (30) with k. Given the
. initial conditions z (t 0) =2z (to) = 0, it follows that all derivatives of z evaluated

at t - to are zero. Therefore z is identically zero.

In the following example it is to be assumed that this is the case. Then
G=RxF=0 or_(}=G31_<where G3
coordinate system, (r, 8) in the x~y plane. From Eq. (30) two sca}ar equations

is a constant. Now introduce a polar

result:

. . 3uK
r

T

1d 2;
rdT(r 9):0

A particular solution of these equations is given by
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3_u,K2

= = B
r ro,e God:t\/r3+

5
T
o] 0
where r _, 90 are constant. Since
. 3uK -
_ 142 _ -2
g=|r" 6| —,Jroy+ -
o
and
2
ecosf=-—t— -1 ‘
ur |
o |
|
it follows that
ecosf= 3K2
2
r .
o
Also, r =0, so that
. pr  esin f
R R=rr=——7sp—=0 .

g

As a result it is seen that e sin f = 0, Therefore, it may be concluded

that e > O, f= 0. From the equation

_R_=r<cosf;£+sinf§>

one obtains

T i

R=r

It is clear that the vector P is always in the direction of the vector R and .
is thus a rapidly varying parameter. Consequently, there is no guarantee that
the method of variation of parameters and an approximate integration procedure

will yield a satisfactory solution. -
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SUMMARY

This report contains the development of a first order solution for the
polar oblateness problem with the potential limited to the second spherical
harmonic. The development begins with the equations of motion of the two-
body problem. Expressions for a set of parameters are derived. The per-
turbation equations of these parameters for an arbitrary disturbing force are

. generated, applied to the oblateness force and integrated analytically to obtain
the first order solution. This solution is valid for all orbits except those

. which are nearly rectilinear.

“a
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I - INTRODUCTION

The purpose of this report is to present the development of an improved,
approximate, closed form solution to the equations of motion of a vehicle about
a spheroidal earth. The nonsphericity of the earth is assumed to be character-
ized by the second spherical harmonic. A feature common to some solutions
which have been offered is a limitation on the applicability of the solutions in
the neighborhood of an inclination of 63°, due to a singularity at this inclinationl’z.
The original motive for the investigation, the results of which are presented
here, was to examine the possibility of overcoming that restriction. Since the
use of the argument of perigee is the immediate occasion for the presence of
the critical angle of inclination, an obvious corrective measure is the choice
of a set of parameters which does not incorporate that element. However,
numerous other pitfalls must be avoided. Some of these are: a) indetermination
of the initial value of the time of perigee passage for nearly circular orbits3,

b) degeneracy of the solution caused by the presence of the eccentricity in the
denominator of the perturbation equations for nearly circular orbitsg, and c)
the introduction of secular terms in elements which are clearly bounded as a
result of the integration of the perturbation equations. The particular set of
two-body parameters selected for the present development has been chosen
so as to minimize the difficulties listed above. Neither time of perigee
passage nor argument of perigee is included in the set of elements, none of the
perturbation equations contain the eccentricity in the denominator and the in-
tegration process is modified so that secular terms do not occur explicitly in
the equations for bounded elements. However, it should be noted that the solu-

tion is not applicable to nearly rectilinear motion.
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The development is self-contained. First, expressions for the two body
parameters are derived from the equations of motion, then perturbation equations
for these parameters are obtained for an arbitrary disturbing force, and are then
particularized to the oblateness problem. Next, these equations are integrated to
obtain first order corrections. Finally, some remarks are included concerning
the properties of the parameters, some general results of the second order theory,
and some possible applications.

In this report, the convention is adopted that capital Latin letters repre-
sent vectors (or matrices), and small Latin letters with appropriate subscripts
indicate the components of these vectors.

IT - DERIVATION OF A SET OF TWO-BODY PARAMETERS

The equations of motion for a vehicle of negligible mass about a spherical
earth are:

R+&R=0 (5))

where y is the product of the gravitational constant and the mass of the earth,

R is the position vector and r is the magnitude of R. A rectangular, inertial
coordinate system is used with the equatorial plane taken as the x-y plane.

The general solution to these second order, differential equations generates

the vectors R and R as vector functions of six constants of integration and time.
The s1x constants are determined by a complete set of initial conditions: vectors

RO’ R0 and tO.

From the many constants that can be derived, an independent set must be
selected. For application to the oblateness problem, the following set has been
chosen: U, V, g, e cos 0, e sin 6 and tO‘ U and V are unit orthogonal vectors
which specify the plane of the motion. The parameter, g, is the magnitude of
the angular momentum vector, e is the eccentricity, and 8 is the angle measured
from U to the perigee vector. The parameters g and e determine the shape and
size of the osculating ellipse and 8 gives the orientation of this ellipse in the
plane. Expressions for these parameters will now be derived and their in-

dependence demonstrated.
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Three of the constants are obtained immediately by crossing Eq. (1) on
the left by R and integrating the result.

RxR=0 (2)
RxR=G=R xR (3)

The magnitude of this constant vector just defined is one parameter, g.
The other two parameters are contained in the unit vector G/g which may

be expressed as the cross product of two orthogonal unit vectors in the plane

perpendicular to G. Thus

@

=UxV (4)

U is arbitrarily chosen to be in the direction of RO; this direction is not
a constant of integration and therefore not a parameter. Thus R and R can be

exprgssed as follows:
R=(R*U)U+(R V)V (5)
R=@R 'U)U+@®R V)V (6)

Let ¢ denote the angle between R and U. Then R+ U =r cos ¢ and R* V

=r 8in .

To obtain an expressioningp for R* Uand R + V, one proceeds as follows:

R-u="8B V. Llg. wvxd)]

Integration yields

330




“»

I.{-U=—u-V' +
g C

= |

1

()

Using the initial conditions to evaluate the constant, one obtains, recalling that

initially U is in the direction of Ro,
R,°R R *R
+ g sin Yg=¢y =

To

since Yy = 0. Eq. (7) now becomes

L2 i R * R M
R.U=_ELR°V_g 0 Oj
g T I r,

In the same way, starting from

.R"0V=_E U.LR(R_.R_’)._
g 3

CY-K

]

one gets

Using

R:(Fxy)-E-8,

and the initial conditions, the constant ¢y may be evaluated

1 T

(8)

)

(10)
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It is still necessary to express r in terms of ¢ in the new parameters. This
will also allow one to express R as a function of these parameters alone.
First, one multiplies Eq. (8) by sin¢ and Eq. (10) by cos ¢ and subtracts to
obtain

fi‘(Usimp—Vcos(p)=—§{%’(Ucos<p+Vsin<p)
- Ro*R -2 . .
-89 "0 i -(B— - ]
Lp x, sin ¢ \“ro 1>cos(p} .
But
.- i —.. B— 9_ = g.
R° (Usingp - Vcosp) =R <rxg>—-r
and
B'(Ucos +Vsing)=1
T ¢ @
Hence «
R,‘R -
_B-_Hi_|B 0 (B
S g{l I-IJ- ry sin ¢ &#ro 1>cos<pJ}
and
. 2
r= 5o PR (11)
0 i
1+ cos E__;)-& sin
p[1veoso (B -1)-E==sing |
One now defines the parameters e sin 6 and e cos 6 by the relations
2
£ _1=ecosb
HTq
and .
R)" R
-8 = e gin 8
K Ty
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where it is evident that e is the eccentricity and 6 is the angle measured from
U to perigee. Egq. (11) thus becomes

2 2
r= “<1»+ egcos o e)> TR +ge cos f) 11’
where f is the true anomaly.
One can now rewrite Egs. (8) and (10) as follows:
f{-U=-{;(sm¢+esme) (8")
I.{'V=§(cos¢+ecos6) (10

A further expression isrequiredtorelate ¢ andt. In the process of deriv-
ing this relation, a sixth constant of integration will arise. To do this one pro-
ceeds by multiplying Eq. (8) by cos ¢ and Eq. (10) by sin ¢ and adding:
Ry* R
To

1.1‘ (U cos<p+Vsin<p)=—§ —R;.— (V cos ¢-U sin o) -[ﬁ

+ gi—-— 1>sin(p]}

cos ¢

KT,
The left hand side is R * R and the first term on the right is zero. Hence,
r
. - R, R -2 ;
BR_U/E DD cosp+(E—-1)sing|=Hesint=t (12)
T gLy 0 UL, g
From Eq. (11)
2 R."R -
r ~
9 ;—sin¢<-gr—-1)—g-0—r~—()-cos¢’ .
= & ° K o L Yo =l 2 R'R7g.
roorp (L )t R e T Ll
1+ cos < -1)-82————gin
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or

H.
1l
=)
w .
l
g |
2]
[\
7N
b e
=
/
-60

Hence

b= _g;_ (13)
r

This equation may be written as

r@%

I

and using Eq. (11’), one obtains

2

ull+ecosft

](b=§(l+ecosf)

or
. 2 2 2 2...2 .2
—ﬂ——=u‘—|_1—e +ecosf+e” cos” f+e” sin f] (14)
l1+ecosf g3 j

Considering only the factor on the right, the following statements can be made.

2 n
(1) “§ (1—e2) is a constant and can be shown to be equal toJ 5
1-e

g

where n is the mean motion

2
_]lg— =H§-—_—-—'COSf—g.r :..1_' _U_I_‘_d_ 3
(2) g2 ecos f (l+ecos{) g T e £ g dtesmf
1,2 2 2.1
(3) Egz e sin f=§g-e sinf r
Combining the last two expressions above, one gets
A r—q—(e sinf)+esinft|=4% i(resinf)
g2 dt g2 dt
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Thus Eq. (14) now becomes

. n
(o] =",‘——_+
l+ecosf \/1—e2

4
dt

(r e sin )

mwh:

Integrating with respect to t, the left hand side becomes after some algebraic

reduction,

o dt
l1+ecosf \/1

1 /l-e sin ¢
<(1+cos¢) (1+ e cosf)+e sin f sin

and the final equation* is

1 2
- € Sln<p \
o) =2 k(1+cos¢) (I+ecosf) + esinfsing./

n (t-t

2
——%./1—e (resinf+r_e sin 6) (15)*
g o
This is also the defining equation for t, the sixth constant of integration.

In Egs. (5), (6) and (15) the constants U, V, g, e sin 6, e cos 9 and tO

occur. To summarize, these constants are defined by the following equations:

=2 coS<p-sin<pL—g—x%] (16)

=%—sm(p+cos<pl_g R] (17)
g=|G]| (18)
ecos6=§(I.{- V) - cos o (19)

* This equation holds only for e < 1. Only slight modifications are required
required for e > 1.

335



esin9=ﬁ-(sin(p)-1.{‘ U (20)

\/l-ezsinq) >

(L+cose) (L+ecosf)+esinfsing

.2 -1<
to—t-ntan

(21)

+—J'iz—,/1—e2(resinf+r0esin6)
ng

It should be noted that U and V account for only two independent parameters
since they are orthogonal unit vectors and the direction of U was chosen arbitrarily.
It remains to be shown that the parameters just defined are independent of each
other. This will be proved by showing the equivalence between the set above and
the set RO’ I.{O whose elements are known to be independent of each other.

Further discussion of these parameters appears in Section VI,
From the derivation that has preceded, one easily obtains RO and R in terms

0
of the parameters on the one hand, namely,

2
r, = £
0 p(l+ecos?b)

0 p(1+ecos?b)

R

ft0=<lgé-esine>U+(1+ecos 8) vV

and on the other hand, the following parameters in terms of RO and RO:

g=/(R0xRO)- (Ry x R)

R

]

0
0

=S X7 (G=R0xR0)

o0
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ecos f=— -1
HTq
R.°R
esinf=-8 0 0
[ Ty
t0=t0

IIT - PERTURBATION EQUATIONS

Before proceeding to the development of the perturbation equations, it
should be observed that, of the quantities listed at the end of the preceding
section, only six have been obtained as constants of integration. These are
tO’ e sin 0, e cos 6, g and two contained in U and V which determine the
plane of U and V. The third constant contained in U and V which specifies the
direction of U in the plane is arbitrary. This last arbitrary constant does not
vary under the action of the disturbing force. As a result, U is not subject to
rotation about the angular momentum vector.* Since ¢ is measured from U, this
restriction implies that® does not include the time rate of change of U in the
osculating plane. As a consequence, the time rate of change of ¢ must have the
same functional form that it has in a purely Keplerian motion, i.e., o= g/rz.
Keeping in mind the result just noted, the method for obtaining the perturbation
equations for the set of parameters is as follows:

L Each of the Eqgs. (16-21) is differentiated with respect to time
(considering the parameters too as functions of time)

® Wherever R occurs, it is replaced by

-%ﬂr 22)
r

where F is the disturbing force

L The resulting equations are simplified by making use of the
relations obtained in the preceding section.

* Compare Ref. (4).
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1. Equation for &

Noting that
P2=c-aG g=%-G G=RxR
one obtains
. -— R \_
G=RxR—Rx<—u—3+F)—RxF (23)
r
and hence
G
g=(—=xR)* F 24
g=(Sxr) (24)

2. Equation for U

Differentiating Eq. (16) with respect to time

U=<— sin<p%— cos<p%x%><b-—R—.2—B- U
r

+ cos<pér— sin<p<(—;x;1-i>— sm(p.l__C(g)x%_J
Then, using
1°1=§|:- (sing+ e sin 6) U+ (cos ¢ + e cos 6) V]
and

R

G . R
Ex = =_érk[(51n¢+es1n 8) V + (cos ¢ + € cos 9)U]

it follows that
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cos(p%- smgp(%x %) =-éir§_e sinf U+ (1'+ e cos f) V]

But .

Losint= —f-‘;z—li (Eq. (12)
and

_g% (L+ecosf)= l—% (Eq. (117))
or

é.%(1+ecosf)=<b

The coefficient of ¢ in the U equation above is then simply - V. Replacing these

terms in the U equation

00 vo-RR 0s BBy ve s [ §(Dx
but

49216+
and hence

ﬁ=sm¢[<%X%>x%]<F &>
or

: . r/G G
U=-singp E\E . F)—g— (25)

3. Equation for V

In an entirely analogous fashion one obtains V.
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V=mm¢§<%'F>g (26)

4, Equation for (e cds 6)

(e@sm=gﬁ-v+sm¢¢+gR-v+gR-V
7 T M
From Eq. (26) it follows that
R+ V=0

and, rearranging terms,

A = // —g_ i by 3 \ g . g o .
e cos B) =1\ - sinp+@sing )+2F*« V+2R"V
( )= FsmeTe o)ty i
The first term on the right is identically zero, so that, finally
(e®s®=iF°V+§R'V (27)

5. Equation for (e sin 6)

In analogous fashion
coy=-|ER- Ep.
(e sin 6) L“R v+Er U} (28)

6. Equation for ;CO

In order to simplify the derivation of 1.:0, Kepler time derivatives will be

assumed to have been canceled. In addition, in order to simplify the writing,

ecosf=p e cos 8=p (29)

esinf=q —esin9=q0

'Starting from Eq. (15)
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/1 - e2gin@
_ 1r 1 e sin$ — 5 q qo N
n (t-ty) =2 tan” | , —\/l—e SRt
~ cos & (1tp) +4q sin 9 P P,

one obtains, on differentiating with respect to time,

sin % J 1-¢2

cos %(1+p) +q singzg

. : 3 2 _d_
b (t-tg) -n t, 5 20 at
(1-e7) sin 5
1+

!’_cos g (1+p) +q sin "22] 2

(30)

a % ar 1e2> Jlezd’ qo)
Lip  l4p /dt N dt\T+p ~ Top,

a. The first term on the right of Eq. (30) becomes

[sin‘zg (cos% (1+p)+ a sin -2-“-’) E‘i— <\/1-e2> - ,\/l-ez sin 922 (p cosgz2 +4 sin %}]

2
. 2 2, . 2
| cos g (1+p) + q sin 9291 + (1-e“) sin 522

The denominator, by making use of the identity p2 +q2 = ez, is
(1+p)(1+p)
b. The last term in Eq. (30) is

- Ji-e Q(1+pL ap % ("R "Po %
‘ (1+p) (1+p)”

c. The right hand side of Eq. (30) thus becomes

5 2 sin gQ(p cos-‘D-+qs1n
- f1-e{
el Ty

a/ o2y
dt\le;

(1+p)(1+p)

(1+p) (1+po) |

{2 sm2 | (1+p)cosQ+ qst l—q (1+p )+q (1+p)\L

341



d d 2 _ (pp+4%)
. gyl-e =-
1-e

The coefficient of this derivative becomes, after some algebraic manipulations,

(1- e2) sin ¢ and one gets for the whole equation,

./1_e2{(pi)+QQ) sinp +p sing + (1 - cos ) g
g (1+p) (1+p)
L1+9Lt1 TS +Pg) =Py ®

(@ +p)? @+p)®

n (t—to) - nt0 =-

e. Using the fact that
pP,=P cosp + 4 sin
4,=-p sin¢gp + 4 cos ¢
b, =P coso+q sing
4, = -psinp +4 cos

qo 1+ po) - f)oqo ) ® sin ¢ - q cos () (1+p0) + (f)cos(p+ q sin(p)qo

(1+p)° (1+p)°

and rearranging, one gets

e

B (t-ty) - iy = > (b @ sino+ sing) (1+p) (L+p))

(1+p)* (+p, %) ‘

- q(1+po)2 + (Sin(p(1+p0) + Ao cos¢)(1+p)2]

+ q [(qsin(p+ 1-cos() (1+p) (1+po) + (1+p) (1+po)2

+(, sin<p—cos¢(1+Po))(1+P)2:|} (31)
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f. Noting that

” )
=8 _ _ER°R
P T 1 q LT
' p=2E@1+p) y=fq. 02D g p (32)

it is now possible to express Eq. (31) in a more convenient form. First, the
right-hand (R. H.) side of Eq. (31) is rearranged as follows:

= _ 1 Jrg_ '— . 2 _ 2
R. H. (l+p)2 (1+p02) Lg (1+p) L2 sing (1+p) (1+p0) q (1+po)

+2{(sing (14p) +a, cos g) (1+p)? + q (1+p,) (3 siny +1- cos o)

+(dg, sing -q cosp (1+p ) ) (1 +p) |

+(1+p)? %i-(q sing+1-cose) (L+p )+ (1+p)°
+(qosin(p—cos¢(1+po))(1+p)_j}
1) The coefficient of & is rewritten as follows:

. 2 X 8 .
2 sin ¢ (1+p) (1+po)+2 (sin (1+po) + g, cos ©) (1+p)2 49, singp

. —QCOS(p(1+po))(l+p)
. —(1+p0)(q+qp0-qzsm<p-q+qcosw)

Replacing P, by p cos ¢ + g sin ¢, one can factor out (1 + p) from the whole

expression and rearranging again,
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(1+p) {2(14p) sin o (2+p) + (1+p,) @Psing - 2qcosg) + 2 (1+P)q, cos @

+q q, sin @}
But
-psing + qcoso=q (33)
and
gsinp +p cosp =p, (34) ‘

thus by Eq. (34)
(1+p) {2 (1+p ) sing (2+p) -2 (3+p) q,+2 (1+p)q, cosp *+ d g, Sin(p}
- (1+p) 2 {sin g (14p) @+D) - o, (1-cosel} - A g, sing]
2) The coefficient of R *+ F is rewritten as follows:
i b
2 (1+p0) (gsing+ 1-cosp) + (1+p0) |_1+p0 - gsing - 1+ cosp -cos @-p cos(p_|
+(1+p)q,sing
By using Eq. (34) this expression reduces to
2 (1+p) (gsing+ 1 -cose)+q,sing (1+p)

Putting the last two results together, one gets

—

—\/1-e2

R.H. = {g [2 {sinp(l+p ) 2+p) - q, (1-coso)} - q g, sin so] ®

2
(1+p )" g
i n
+R-* F Lz (1+po) (gsinp+1-cos ) + (1+p) q, sin@J}

g. h(t-t)-n (io)

3l




Noting that

n= [ & 1_2 R'R
Va3 a r u
2

= _3- é_ '=——2a "

n= 2na a m R*°F
thus

a=-322p.

K©

and

w

R - _ . - _ I—a—_‘. _ * =
n(tto) n(to) an R F(tt0)+t0_§

If both sides of Eq. (31) are then divided by n, the coefficient of R. H. becomes

but

_J__/£i=h 1 a
2 u

- 2 2
(1+po) p-a (1+po)

Thus, Eq. (31) becomes finally

t +32 é-F(t-t)=——‘a——z{g[z{sin (1+p_) (2+p) -q_ (1-cos o)} - q sin:'
0" 0’ p(l+p) ® o % ® 9% Sino

+(R*F) [ 2 (L+p) (asing + 1 - cos o)+ (1+p) q_ sin o) } (35)
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IV - APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

For this problem, F = V& where

&= E—s— ) (36)
r

and where k2 is the coefficient of the second spherical harmonic due to the

oblateness of the earth. Then

F_-ﬂ‘_“_LQ 5_>R+ZZK} @

By Euler's theorem

L k2<1—?i§—> (38)

Since all the expressions on the right side of the perturbation equations are ex-
pressed more simply in terms of ¢ than in terms of t, derivatives with respect
to t will be replaced by derivatives with respect to . For this purpose relation

(14) is used, i.e.,

(:Dz

from which one obtains

I (39)

The right-hand sides are expanded in terms of trigonometric polynomials in

multiples of ¢ with functions of the parameters as coefficients.

For purposes of integration the perturbation equations are all written as

the sum of two parts, the first of which, indicated by a subscript H will be integrat-

ed "exactly" while the second part, indicated by a subscript S, contains short period

terms only.
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The perturbation equations are as follow:

1)

where

(e cos 8)’ = (e cos G)H’ + (e cos G)S’

(e cos B);' = }—k-z | 2w v -1] 1+ 2e cos ) sing (402)

2

ro 2{ 1 .2 . . 1
(e cos B)S 1 -1 (u3 Vs ) (7 sin 3 ¢ + sin <p)+2 ugvy (Tcos 3+ cos ()

where

2)

+e cos O ‘_-él- (u32 - v32) (3sin4¢p + 5 sin 2¢p) +u3v3 (3cos4¢p+5cos 2(p)~,

+esm6,_2 (u - Vg )(cos4(p cosz(p)+3u (sm4<p smz(o)]

+ (e sin B) (e cos 8) i_-;'—(cos 3p-cosp)t (-g— cos 5 (p+§cos 30 --;7Ic05<,p)u32

2, 5 3 1, 5 . 3 gin 3 Bain
+ vy (-80055<p+80053m+4 COS<,9)+u3v3 (4 s1n5(p+4s1n 3¢ 2sm(p)d

+(e cos 9)2L%(sin 3 o+sing) —1—2(5 sin5 ¢+ 23 sin 3 ¢+ 18 sin () u32

1 2 Y3¥s
+T§ (551n5(0+11sin3¢;+651n<p)v3 +8— (5cos5p+17 cos3¢+IOCos<pﬂ

2
ug

+(esin9)2L Z(8in3 - 3sm<o)+ (5s1n5<p 5sin 3 ¢ - 10 sin o)

2
v u,v

+—3—( o8sind¢+17sin3 - 26 sin ) + 83(—500s5<p+11cos3<p
7
-GcosQ:)j]L

(e sin 6)’ = (e sin G)H' + (e sin G)S'
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2

3u k2
(esinG)H'=— '.2 (u +v ) 11(1+2ecosf) cos (41a)
g
o 3 4%, 1, 2 . :
(es1n6)s= 1 (u - )(7cos3<p COS p) - 2 ug 3(7s1n3<‘o-s1n(’p)
g

+ ecos SL—-g— (u32 - v32) (cos4 p+cos2p)- 3u3v3 (sin4¢+sin 2 ¢)

+esin 9[-% (u32 —v32) (3sin4p-5sin2 <p)+u3v3 (3cos4p -5cos2 () .
2
r1, - . Us
+ (e sin 0) (e cos G)L—i(sin3¢+sm (p)+—8—(—5sin5(p—331n3@+2 sin ()
9 (41b)
v u,v

3 . - . 3 1
+—5(58in5 p-9sin 3p-1lasing)+ —3 (5cos5(p—3cos3¢—10coscp)J

2
u

+(e cos6)2|_-‘-11- (cos 3 +3cos <p)—Tg— (5cos 5+ 17 cos 3 ¢ -26 cos )

2
v u,v

(50085(p+5COS3(p 10 cos <p)———3—3 (5sin5 o+ 11s1n3(p+631n(p)J

2
ugy

+(esin9)2L Z(cos3 p- cos(p) (5cos5(p—1lcos3<p+600s(p)

2

A\’ \lV3 5
+-ﬁ(—5cos5(p+23cos3¢—1800s(p)+ 8 (5sin5(p—17sin3(p+10sin(p1j

Next, the perturbation equations for the components of U and V are given.

3 () =y’ + @y’

2
Uy’ =6“ k2sin i) r(—v +u Eg)cos +(u, +v 'g‘é)Si 1 (42a)
vn T A 05 (Vg tuy57) cospt (Ug+ vy ~7)8ing |
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4)

5)

6)

2
6 k
(ul)s'— g (ecosf)—-— s1n<p{<v U0 )cos <p+\u +Vio 3>sin¢p} (42b)

()" = (p)gy ' + (uy)g’

6y,2k

(o) = g —— sinp—> z {(v 14 >cos(p+<—u1+v2:gg§>singo} (43a)

62

,_OH €3~
(ug)g" =7
g

g g
3 _. 3N 3 Vi )
(ecosf) g sm<p{<vl+u2g,/cos (p+<-u1+V2 z )smwf (43b)

(1) = (ughy’ + (ug)g’

, 6“zkz B3\ .
(u3)H = g4 E/ sin ¢ (u3 cos ¢ + vy sin ©) (44a)
2
2/°3 . .
(u3)S i <Eg.> (e cos f) sin ¢ (u3 cos ¢ + vy sin o) (44b)

(v = vy + (v’

2

6u k g

‘= 2 3[(
(vl)H . 7 cos <D———g L

- Vo +u1gg—3>cos <p+<u2 + vl%Dsin(p} (453)

) 6,1, k2
(vl)S =- g (ecosf)—cos¢{< +u1—->cos (p+<u +v -—~>sm<p} (45b)
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T (vy) = vy * (g’

(VZ)H’=—6,J'k cos @ —- {(V +u, >COS(p+< 1+v2§iDr >sm<p} (46a)
g

6uk g g g
(Vz)sl =-——‘1—2 e coszg;§ cos (p{<v1+u2§3 >cos o+ (—u1+v2—g§>sin 1) (46b)
g

7 = ! 7
8)  (vg)' = (vg)y + (Vg)g ‘
6 pzk g
2/ 23 .
(v3)H' <E> cos @ (ug €08 @ + Vg sin ©) (472)
2
,_ Suky 832 .
(VS)S = - (e cos f)<E> cos ¢ (u3 cos o + Vg sin ©) (47b)

9) g8 =8y *8&g

_ 2 . .
gH' =-6y k2 (v3 cos ¢ - U4 sin ®) (u3 cos ¢ + vy sin ©) (48a)

gS, = - 6p,2k2 e cos f (v4 cos ¢ - ug sin @) (ugy cos ¢ + vy sing) (48Db)

10) ¢

. 3ak, u
o322 d(t-ty) +22 0= -———2——7—3{\_3 (ug” + v - 1](1 -¢%)
u H (1+e cos 6)°g ‘

r 7~ N\
+Cos | Ugvg '\—2 esin6+ 4§ esinBecos 9+% e sin 6 (e cos 9)2 +% (esin 6)3/?

- (u32 - v32),<% +% € cos 6+% (e cos 6)2 +%— (e cos 6)3 +% (e sin 9)2>
(49)

(cont'd on next page)
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P
+<5;’- (u3+v3) - 1> -2 -ecos B+ %(e cos 6)2 ——zl—(e cos 9)3
- % (e sin 6)2 - ecos B (e sin 6)2>—i
+cos 2 (pl_u3v3(% esin 6+§ ecos fe sin 8) + (u32—v32) (—%—%e cos 0 -7];(6 cos 9)2
+—(e sin 6) ) < (u3 +Vg ) 1><ecose+(ecose)
1 .
+ 3 (e sin 9)2>]
N 1 1. 2 11, . 3N
+ cos3¢Lu3v3\\72es1n9+ 8 esmeecos9+§esm9(ecose) -—8~(esm6) )

2 _2/77 11

+ (u3 -va K gt7g ecos 6 -~—(e cos 9) +A7 (e sin 9) (e cos 6)3

+ecos€(es1n6) > (u +v ) 1,((esm9)

2
B czos é) _(e(;ose) + e cos 6 (e sin 9)2>J

+cos 4(,3[— ugvg (% esin 6+—g—e sinfe cos 6)+%(u32-v32)<2 ecos 68+2 (e cos 9)2
- (e sin 6)2>J

3's 2 3
(—Zlecos BesinB-26e sin 0 (e cos B8)° + 5(e sin ) >

+ cos 5¢>L

2 zk(e cos 6) (9 cos 6)

+(ug v i ecose(e sin 9) —— (e sinf) ) i

+ sin(p'_- u3v3<1+§ e cos 6+g (e cos 9)2 +§ (e sin 6)2 —g ecos B (e sin 6)2>
+ (u32-v32)(;esin 0 _21_ esinfe cos 6 —% esinf (e cos 6)2 -%—(e sin 6)3>
(49)

(cont'd on next page)
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' N ™ 7
+K%(“32+V32)‘1)<e sinBe cos 6 —-}I esin@ (e cos 9)2 —%(e sin 6)3/J
o I 2 2 1 .
+sin 2<pL-3 u3v3<1 - (e sin 6)° - (e cos 6) -zesin 6 e cos 9>
- 5(u32-v32)<e sin 6+% esinbBe cos 9)- (2e sin B+ 3 e sin Be cos 6)
2 2, 4
(% (u3 +V3 )-1)} .

+s1n3(o[ 7+ ]élecos 6+lj7 (esinB 2 —% (e cos 6)2 +%(e cos 6)3

+;ecos6(esm9) >+(u Vg )es1n6+ (esmG) —176es1n6(ecose)

-9 sin 6 e cos 6>+ <§(u 2+v 2)—1><— e sin 6 e cos 6
4 23 3

™\
+ % (e sinG)s-% esin6 (e cos 6)2)J
+s1n4(pLu <6ecose+6(ecosﬂ) - 3(e sin 6) ——es1n6ecos6>

2 2 0 9 >
+(u3 ~-v )\\3es1n6+2es1neecos6J

3
+sinb [Su v Cl(e cos 6)2+l(e cose)s—l(e sine)z—lecose(esin6)2>
PL°%3Vs\2 4 4 2

+5 (u32-v32)(%e sin Be cos 6+ 1—%— e sin 6 (e cos 6) - (e sin 6)3>:|} ‘

(49)
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V - FIRST ORDER SOLUTION OF THE
POLAR OBLATENESS PERTURBATION EQUATIONS

In solving the perturbation equations derived in the preceding section, 1 3
general procedure is to solve exactly for as large a piece of the equation as
possible, assuming that the parameters appearing in that piece are constant
(except that parameter for which one solves in that particular equation). * The
remaining terms are then integrated holding all the parameters constant and
the results are added to the solutions obtained in the first step. This procedure
is justified because it is equivalent to a second application of the variation-of-
parameters method in which only first order terms are retained. Thus in the
perturbation equation for a parameter x, that part, labeled xH' in the preced-
ing section, is the piece of the equation that can be solved exactly under the
restrictions mentioned above. The remaining part of the equation, which is

integrated keeping all the parameters constant, was labeled x..’ in the preced-

S
ing section.

The equations to be solved to obtain e cos 9, e sin 0, Uy, Uy, Ug, Vyp, v,
and Vg are Egs. (40 through 47). Of these equations, those lettered a' may be
divi@ed into the sets of coupled equations I_(40a) and (41a)1 » | (44a) and (47a)
and ’_(42a), (43a), (45a) and (46a)|. These sets are solved b; standard methods

with the following restriction: In each system of equations, those parameters

on the R.H.S. (right-hand side) which do not appear on the L.H.S. are kept con-
stant. Thus, for example, in the system of Egs. (40a) and (41a) the parameters
g Ug and A2 appearing on the R. H. S. are held constant on solving this system.

The first order solutions are then the following:

* Although the method employed here and that prescribed by the method of
averages have different theoretical justifications, the application of the two
methods requires the solution of equations which appear to be quite similar.
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1-cos ./ 1+2¢ 9 © \
e cos 0 cosp - sine 173e, €,*(ecos 6)0
=cosy 1+ 2€50
- sin v/ 1+2€2(p 6
i sin ¢ coS €, +(esinB)
1 - cos / 1+2€2(p
in cos €+ (ecos 6) W 1t2¢
sin @ @ 2 0 2
N 262
+ sin /1 + Zeé(p
- sin “/1_;22—290 (e sin 6),
-cosp Sing €t
| 1+2¢y JITZe,
(50)
J‘ (e cos G)S' do
+
‘[ (e sin G)S' deo
2
where =[§ (u 2, v 2)- 1}3“ kz
€9=L2 M30 T V30 4
€o
f—— sin ,/1+ 2€1 ®
u cos - sin cos ./1+2¢ - u
3 P ® 19 mrl 30
Vg sin ¢ cos ¢ —A/1+zg1 sinA/1+2<1<p cosA/1+251<p Va0
(51)
1
J (ug)g" do
+
¥ '
, \ Ugls’ ¢
where €, =~ g~
g, o
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1 c 8 c
112 1 -as +a bc; bs u20
1| 4je’2pel | % ¢ 4 4y Y10
Vo . s 'ds dc V20
n , (52)
Jmyg' do
f (uy)g’ do
+
f‘ P
J)s do
f (vo)g' do
where

%= (5] +28) cos x| o+ (10 1+28) cos [y ] o~ (|1, ]-28) cos |34 |
+ (1xg] - 28) cos I, le

ag = - (Ix,] +28)sin |A1|<p+(|>\1|+2,3)sin|x2|<p-(|>\4|—2.3)sin|,>\3!<p
*([Ag]-28) sin X, |o

b = (|x,| -20) sin X lo-(]2] ~2a) sin [A,|@ - (I\,] -20) sin Xgle
+(I23] - 20) sin X4l 0

b, = (|),] -20) cos X le=(1A4] ~20) cos |A2|(p—(lx4| ~2a)cos [Ag] @

+(|>\3|-2(y) cos |x4!<p (53)
(cont'd on next page)
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c, = - (l)\z\ +28) cos ‘}\1‘(9+(\)\1‘ +2R) cos !>\2‘<p+(1>\4| -28) cos |>\3|<p

- ([)\3| - 2B) cos l)\4\ %)

c == (|A,] +28) sin Ix; 1@+ (Ixy]+28)sin IAplo+ Ayl -2B)sin [Azle

- (|x4]-28) sin [x4| @ (53) cont'd
d = - (lxz‘—zq)cos \K1l<p+(|>\1| - 20) cOS |>\2\<p-(|>\4\ - 20) cos l)\s\ ©

+{Ixg] - 20) cos Ayl e
d =

¢ =~ (Ixy] -20) sin Ao+ (In] -20)sin Ay 1o-([X ]| -20) sin IXgle
+ (])\3| - 2q) sin |>\4l ©

and
€

2
e (D)
|)\1| =a+1+’Va2+23+1

|_>\2‘ =q+1-V a2 +28+1 The absolute value signs used here

indicate that a factor i is omitted
‘>\3‘ =.(a S1)+ /az +28+1 from the \'s which are the character-

istic roots for the system of Egs.

(42a, 43a, 4b5a, 46a).
Ny | = (- 1) NZ +2p+1

The equations to be solved to obtain g are Egs. (48a) and (48b). The R.H.S.
of Eq.(48a) is a perfect differential if one takes into account the equations for
u3’ and v3' (Eqs. 44a, 44b, 47a, 47b). In Eq. (48b) the parameters appearing
in the R.H.S. are given their initial values and one obtains finally the following

expression for g4
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- 2, 2
g4 = go4 - 12 ”2k2 I:&u3 cos ¢ + V3 sin (P) - @30) J + 4j gsl dp (54)

The equation to be solved to obtain t0 is Eq. (49). The L.H.S. of this
equation is a perfect differential, provided one assumes that a is a constant,
2,5 and that the tO occurring in the second term on the L.H.S. is also a con-
stant, In a first order solution this is justified. Thus, the L.H.S. of the
equation integrates to

3a0
to (t) +T @ (t- tOO)

In the R.H. S. of the equation, the parameters are assumed to have their initial

values and the integration is performed with respect to ¢. Thus

3a 3k

= 0 2
fo (0 =tgg = P(t-toq) -

[1+ (e cos 6)0]2g0

'. % (“302 + Vsoz) - 1] ® (55)

+ integral of other terms.
The limits of integration are zero and .

SECTION VI - DISCUSSION OF THE RESULTS AND APPLICATIONS

Now that the perturbation equations and their first order solutions are avail-
able for examination, some distinctive features of the parameters become apparent,
It has already been noted that the parameters U and V are perpendicular unit vectors
which are to be regarded as rigidly attached to the angular momentum vector G
throughout the motion. These parameters thus differ in an essential way from any
of the conventional sets of parameters such as the Delaunay elements or initial
conditions, because to relate the initial values of the parameters with their values
at time t requires knowledge not only of the position and velocity initially and at
time t, but also a knowledge of the trajectory between these times. For any con-
ventional set of elements, on the other hand, knowledge of the initial and terminal
conditions is sufficient to determine the initial and terminalb values of the elements.

It may thus appear at first sight that the elements used in this report involve
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complications that are not present in the use of conventional elements. It must,

however, also be recalled that the present elements are so defined that the

independent variable ¢ has no perturbation derivative, while with conventional

elements the independent variable, usually either true or mean anomaly, does

have a perturbation derivative, which introduces complications in the derivation,

and integration of the perturbation equations. Further, even though the present

elements are functions of the trajectory (and hence of the particular perturbing

function used), once the perturbation equations have been integrated the fact that

the solution of these equations must be used to determine the elements poses no .

fundamental problem.

In this report only the first order solution of the perturbation equations has
been presented. To obtain the second order solution Egs. (40) to (49) are integrated
again replacing those parameters held constant in the first order integration by
their first order solutions. The integration of these equations involves a great
deal of routine trigonometric manipulation and will be the subject of a later report.
It is, however, possible to state a general conclusion on the results of the integra-
tion. This conclusion is that the second order terms will be small compared to
the first order terms for a time of the order of 100 periods. This means that
for any problem (for which the first order solution has sufficient precision) the
first order solution.is usable and valid for about 100 periods. The reason for

this is that in the second order solution, terms of the form

sinGe © and 1- 2os €Q (56)

occur with coefficients of the form A k22 where A is of order unity. Noting that,

for any ¢ ‘

Il-cosegp= %Sinzggg < sin € ¢ <o
€ € ‘ €

it is evident that no such term can creep into first order so long as

2
<
Ak2 © k2
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or

L <« 1
2w 2'11Ak2

~ 100

It should be remarked that if ¢ vanishes the first of the terms (56) is secular and
the second is a constant. It turns out that for at least two particular sets of initial
conditions there will be secular terms, namely, for initial conditions such that
the angle of inclination is 63.4° and 67.8°. Thus, critical angles of inclination
occur in this formulation, but not in the same way as in conventional theories,

for which only one critical angle has been found. The significant difference is
that in conventional theories the critical angle appears as a singularity in the
second order solution, whereas in the present theory the second order solution
has no singularity, and while it is unbounded in time, it will not affect the first

order solution for about 100 periods.

One might inquire what sort of precision can be expected from the first
order theory. In order to discuss this question, it must first be remarked
that parameters associated with the Kepler problem may be separated into two
categories. Parameters such as the semimajor axis, the eccentricity, and the
angle of inclination, as well as functions of such parameters have only short
period terms in their first order corrections. Other parameters such as
argument of perigee conventionally contain not only short period terms but also
secular terms. No first order secular terms appear in this formulation because
of the way in which the differential equations (40) to (47) are separated. The closed
form contribution to the first order solutions obtained in Section IV from Egs.
(40a), (41a),...(47a) include the analogues to the secular terms as well as such
short period terms as could be included in the closed form integration. Suppose
now that one numerically compares trajectory predictions based on the Kepler
problem, based on the first order solution derived in this report and based on a
high precision numerical integration. If the comparison is made for ¢ = 27, all ‘
short period terms will disappear. Those parameters involving only short |
period terms should be the same for both the Kepler and the first order predictions
and should agree to about six significant digits (since k22 = 10-6) with the precision
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calculation. The remaining parameters should be given to about three more
significant digits by the first order theory than by the Kepler estimate. If the
comparison were made on functions of the elements, rather than on the elements
themselves, one would still expect the first order theory to yield about three
more significant digits than the Kepler estimate except for functions independent
of parameters containing secular terms. A comparison, ato = 27, on position
and velocity would thus be expected to yield, in general, three more digits from
the first order estimate than for the Kepler estimate. Preliminary numerical

comparisons indicate that this is indeed the case.

The application of the theory developed in this report for prediction is
fairly direct. To obtain position, velocity and time corresponding to a speci-
fied 0, one simply evaluates the elements from Egs. (50) - (55), and then sub-
stitutes in Egs. (5), (6) and (15). To obtain position and velocity at a specified
time it is necessary to replace all elements in Eq. (15) except t and ¢ by their
expressions in terms of ¢, to obtain a transcendental relation between ¢ and t.
The angle ¢ would then be obtained by numerical solution of this equation. Once

¢ is known, position and velocity are obtained as above.

The boundary value problem is somewhat more difficult. In this case one
would require knowledge of seven conditions, some given at the initial point and
the rest at the terminal point. Now Egs. (50) to (55) give the parameters as
functions of ¢ and Eq. (15) relates ¢ and t. Egs. (5) and (6) give position and
velocity as functions of the parameters. The boundary conditions would thus
give seven equations for the determination of six independent parameters and
t. The solution of these equations would have to be carried out numerically

because of their transcendental character.

In conclusion, one might comment on some special solutions of the perturba-
tion equations. If the initial conditions are such that the initial orbit is either
equatorial or polar the U and V vectors are constants of the motion. The perturba-
tion equations (42) - (47) for U and V contain % as a factor on the right hand side.
For polar orbits g3 vanishes and hence U and V are constant vectors. For an
equatoria!l orbi’f ug = Vg = 0 and hence, again, the right hand side of Eqgs. (42) -

(47) for U and V vanishes. This last result illustrates one advantage of these
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parameters. The conventional elements include longitude of the node and
argument of perigee which are not defined for equatorial orbits and hence

modifications are required for the treatment of this case.

In Egs. (40) and (41) the expression (1 - 3 cos2 i) can be shown to be a
factor of the right hand side. This factor vanishes for an angle of inclination
of 54.74° and hence for an orbit initially at this inclination the eccentricity
and the parameter 6 (angle between U and perigee) are constants of the motion.
The critical angles 63.4° and 67.8° which appear in the second order theory
have no obvious significance for the parameters used in this report. It is

curious, however that these three angles have the property that

2. _
cos” i=

W
Ul =
3|

b

respectively.
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AN EMPIRICAL STUDY OF CONFIDENCE LIMITS
FOR DESIRED CUTOFF CONDITIONS

BY

R. E, WHEELER
SUMMARY

A statistical procedure, taking into consideration variations due
to changes in launch times as well as errors introduced by the path
adaptive guidance polynomials, was designed to obtain confidence li-
mits for desired cutoff conditions such as radius, velocity, etc. The
following upper bounds for 20 limits were obtained for a given example:
2100 r'neters for the radius, 1. 615 meters/second for the velocity,
. 2692 degrees for the flight path angle, and . 026 degrees for the orbi-

tal inclination.
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INTRODUCTION

It is our purpose in this study to design and perform an experiment
that can be used to obtain confidence limits for desired cutoff conditions
such as radius, flight path angle, velocity, and orbital inclination. We
are interested in two results - the design of a statistical procedure that
could be employed for similar problems and the actual numerical re-
sults from this particular experiment. The confidence limits obtained
will be such that they will take into consideration variations in launch
times across a selected launch window as well as errors introduced
by the path adaptive guidance polynomials.

In the example that we considered, a volume of trajectories was
computed by the Boeing Company using the theory of calculus of vari-
ations. FEach of the trajectories obtained, if flown, would place a
vehicle at the desired end conditions in an optimum manner. Like-
wise, multidimensional polynomials were computed by the Boeing
Company, to fit or approximate the volume of optimum trajectories.

In our experiment the data consists of results obtained by running on
a computer actual trajectory simulations with guidance commands
being provided by the polynomials. These simulations, as run by the
Boeing Company, used the steering and cutoff polynomials to guide the

flight.
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THE DESIGN OF THE EXPERIMENT

Now in the design of our experiment, instead of selecting a random
sample from the volume of all optimum trajectories associated with a
given cutoff condition, we elected to take a sample from a sub-set of
the universe of all optimum trajectories.

A description of the sub-set of the universe from which we select-
ed our sample involves the definition of a nominal trajectory. In the
process of generating a volume of optimum trajectories a certain op-
timum trajectory that satisfies selected performance criteria is clas-
sified as '"the nominal trajectory'. The universe of trajectories that
we considered in our experiment was generated by considering varia-
tions or perturbations of parameters from their values given for the
nominal trajectory.

Thus each vehicle parameter and flight parameter was assumed
to have a nominal value. In a like manner the tolerance or standard
deviation measuring variation from this nominal value was taken to be
known for each parameter. It was further supposed that deviation from
a nominal trajectory could be caused by any one or combination of a
number of independent error sources or parameters, each of which

was normally distributed about the nominal value as a mean.

Under these assumptions the universe that we considered consisted
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' : n
of trajectories, T (x1 , x.':_, x_;,, . .. x;l) such that II 31-P(x'.1'<xi<x'i)]

i:l
= ., 05 where x'i and x'i' are perturbed values of x; (i =1,2, . . .,n)
such that x} - px; =px; - x} . This universe or family of trajectories

we called '"5 percent level trajectories'.

For example if a trajectory is to be obtained by the deviation
of one parameter from a nominal value 1-P(x1"<x1 <x1') = ,05 or
. P(xl"<x1<x1') = .95. Thus x{ = p+ 1.960and x'=p - 1.9600r x{ is the

sum of the nominal value of the variable and approximately two stan-
dard deviations of the variable.

If a trajectory is to be obtained by the deviation of two parameters
then{l-P(-x{'<x1 <x1'):i{l—P(-xl',_'<xz <x£)} = .05, An infinite number of
combinations of x| and x could be assumed to give these trajectories.
For example if x; and X, are nominal values then five possible combi-
nations are:

b4

X + .67<rx1 x, t 1,650,

x) T Ty X2 + 1.4:ZtrxZ

x1 + l.Z?_cJ‘X1 x,; + l.ZZO'X

2

® M of 1420, T toy

X+ 1.650,, % t+.6T0

2

2

THE VARIANCE OF CUTOFF ERRORS

Now let us define y to be a variable representing any one of the
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cutoff conditions: radius, flight path angle, velocity, or orbital inclina-
tion. Then by the variance of vy, 0‘;, we mean the average of the
squares of the deviations of y from the desired cutoff condition.

We observe that, on the average, trajectories formed by small
deviations of parameters from the nominal, give cutoff errors close
to those given by the nominal. Since variations in a parameter are
considered to be normally distributed about the nominal value as a
mean, a large percentage of the trajectories will have cutoff errors
about the same size as those for the nominal. A comparison of a
sample of 5 percent level trajectories with the nominal clearly indi-
cates that the variance of any cutoff condition for the 5 percent level
trajectories will be greater than the variance of the universe of all
optimum trajectories.

The next step in our experiment consisted of selecting a sample of
forty-six (46) trajectories from the universe of all 5 percent level
trajectories. Eleven (l1) of these trajectories were generated by de-
viating one parameter from the nominal. The eleven parameters were
chosen because they seemed to produce the largest cutoff errors. The
parameters selected to generate these off-nominal trajectories were:
stage 1 thrust, specific impulse, and inertia weight; stage 2 thrust,

specific impulse and inertia weight; stage 3 thrust, specific impulse
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and inertia weight along with head wind and left cross wind. Of these
eleven parameters the ones that produced the largest errors were then
combined using the probability theory indicated previously. Fifteen

(15) trajectories were generated by deviating two parameters from

their nominals such as stage 1 thrust along with stage 2 inertia weight.

Twenty (20) of the trajectories were generated by deviating simultan-
eously three parameters from their nominals. As indicated a special
effort was made in the selection of the parameters and combination of
parameters to select those that would make as large as possible the
errors in cutoff conditions. For example in a combination of para-
meters the direction of the variations were selected so that the result-
ing errors would be in the same direction. To summarize, the forty-

six (46) trajectories used in the sample were selected by the Saturn

Booster Branch of the Boeing Company to be 5 percent level trajectories

that would produce the largest errors in cutoff conditions.

Thus

0'; (Sample)> 0'; (5 Percent Level)
CT; (5 Percent Level) > 0'; (Universe)
ol (Sample) > 0% (Universe)
Yy y
This selection technique as described produces a sample which

will have a variance that can serve as an upper bound for the variance
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of the universe of all trajectories generated by allowing parameters

to assume off-nominal values. We could call this ' a 95 percent level

upper bound" since the probability that parameters will deviate from

the nominal by more than the parameters used to obtain this upper
bound in less than . 05.

However, due to the cost involved it was decided that the size of
the sample was too large. From a careful study of the data a more
select sample of size 10 was chosen. Once again the parameters that
were chosen for this sample were selected because they induced the
largest errors in cutoff conditions. A comparison of the variance of
the sample of size 10 with the variance of the sample of size 46 is

given in the following table:

Cutoff Sf Si Sf
F = F(97.

Condition (Size 10) (Size 46) sz (97.5%)
Radius 1,833,578 593,310 3.09 2.43
Velocity . 938 . 3462 2.72 2.43
Flight Path

Angle . 02566 .0083 3.08 2.43
Orbital

Inclination .0000053 . 0000166 .32 2.43

Under the assumption that the two samples come from populations

with equal variance there is less than a 2.5 percent chance of getting

a variance in a sample of size 10 that deviates as much from the sample
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of size 46 as the sample selected. This is true for three cutoff condi-
tions: radius, velocity, and flight path angle. Hence, it can be stated .
that the variance of the selected sample of size 10 is an upper
bound for the variance of the universe of all trajectories in the volume
reiative to these cutoff conditions. It is probably true that the selected
sample of size 10 produces an upper bound for the variance of the vari-
able, orbital inclination.

The ten optimum trajectories that were selected because they
seemed to produce extremely large cutoff errors were generated by:
(1) 20 head wind, (2) 20 stage two thrust, (3) 20 stage two inertia
weight, (4) -1.20 stage two thrust along with 1. 20 stage two inertia
weight, (5) 1.20 head wind along with 1. 20 stage two inertia weight,
(6) 1.20 stage two inertia weight combined with 1. 2¢ stage three iner-
tia weight, (7) 1.20 head wind and a -1.20 stage two thrust, (8) . 9c¢
head wind, -.90 stage two thrust, and . 9¢ stage two inertia weight,
(9) .90 'head wind, .90 stage two inertia weight, and a .90 stage three
inertia weight, (10) -.9¢ stage two thrust, .9¢ stage two inertia weight
and a .90 stage three inertia weight.
VARIATIONS IN LAUNCH TIME

Note that in all the precedirg discussion, we have considered a

fixed launch time. Let us now extend our sampling process to the
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entire launch window. We will design our procedure to involve running
simulated flights at seven different launch times in the launch window;
i.e., -30, -20, -10, 0, 10, 20, 30 minutes. The results of the data
obtained from this experiment will be used to construct upper bounds
for confidence limits for the errors of a given cutoff condition. The
confidence limits obtained will cover the complete launch window and
include all possible trajectories that would be included by chance 95
percent of the time.

The variance of the seven samples taken at the seven different
launch times will be pooled or averaged together to give an upper bound
for the variance of the universe of all optimum trajectories throughout
the launch window. We make use of the following formula for this
analysis.

2 - (np-1) s? + (ny-1) s} +. . . (n7-) st
LR

ng " n, +. . .+ ny -7
Using s5 as an upper bound for the variance of the universe of all

optimum trajectories, the following upper bounds are obtained for 20.

Cutoff Condition Upper Bound for 2¢
Radius 2656 meters
Velocity 1.8544 meters/sec
Flight Path Angle . 3142 degrees
Orbital Inclination . 0458 degrees
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The process by which we selected our samples indicates that a
somewhat smaller upper bound can be obtained by using statistical
theory utilizing the range. At the same time it is evident that the
range of our selected sample of size ten at a given launch time is un-
doubtedly an upper bound for the range of random sample of size ten

from the universe of all trajectories at a given launch time.

Thus, let us assume that we are taking random samples of size
10 from a universe made up of optimum trajectories generated by
allowing the vehicle and flight parameters to vary. Since our samples
are small (of size 10) the range and standard deviation of a sample
are likely to fluctuate together. Thus the range may be used to esti-
mate variance with little loss of efficiency. Once again, assuming
that the errors for each variable are normally distributed, we utilize
tabulated tables for the w distribution where w = R/o.

To estimate the standard deviation of the universe we calculate
the average range of the 7 samples. Call this value, R. For samples

of size 10 the expected value of w is 3.078. Thus an estimate of the

standard deviation of the universe is given as In other words

3.078
to take R to be an estimate of the mean value of the range of all samples

of size 10 is the equivalent of taking the standard deviation of the uni-

verse to be R/3.078. Since the range for each of the selected samples
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at different launch times is an upper bound for the range of random

samples at these times, then

E(o) = (Selected Samples)

R
1 <
(Random Samples) 3078

3.078

Thus R /3.078 for our selected samples gives an upper bound for o of

the universe.

Cutoff Condition Upper Bound for 2¢
Radius 2100 meters
Velocity 1.615 meters/sec
Flight Path Angle . 2692 degrees
Orbital Inclination . 026 degrees

VARIABILITY TESTS

In the preceding theory we have made the basic assumption that
the variability of output errors remains constant during changes of
launch window. In particular we have made this as sumption for the
universe from which we picked out ''selected sample'’. We wish now
to test whether or not the variability of output errors remains constant
across the launch window. As a word of caution it should be remem-
bered that if the variation as indicated by the samples should prove to
be significant it could be due to departure from normality within the
groups rather than departure from heterogeneity.

max s

Two tests will be made for each variable. The m will afford
i

a quick test for comparing the variance estimates. Cochran's Tests
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Si

for the homogeneity of variance >z
Si

tests whether one variance is

significantly larger than the others.

Max S} Max S§
Variable ﬁsz: 5% Point Result —g’SXTII 5% Point Result

r 1.06 7.42 "ot .15 315 POt
significant significant

0 1.59 7.42  "F 156 315 Pt
significant significant

v 1.17 7.42 MOt .159 315 POt
significant significant

i 16.2 7.42 significant .54 . 315 significant
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SUMMARY

This report presents the derivation of a mathematical model for
fitting the steering function. The solution gives cot @ (6 =y +é& where |
is the steering angle and ¢ = arc tan ﬁ) as a function of time and state
variables along the trajectory. This function evaluated att = to should
be the desired steering function. No end conditions were considered as
all constants of integration were combined with unknown constants in
the power series expansion; it is proposed that curve fitting techniques

will be used to obtain these constants.
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INTRODUCTION

This paper is concerned with the development of a mathematical
model that may be used as a guidance function. The basic requirement
of a guidance function is that it instantly converts sensed state varia-
bles of the vehicle into command signals to enable the vehicle to follow
a newly selected optimal path.

At this time multivariate polynomials are being used to express
the guidance parameters in terms of the state and performance varia-
bles of the vehicle. From all reports these polynomials seem to be
adequate to represent the problem encountered at this time. However,
at several meetings of those concerned with this phase of the guidance
problem, opinions have been expressed that some other type function
might better represent the relationship between guidance parameters
and state variables.

So this research was motivated by the problem of trying to develop,
if possible, a function or form of a function that would represent the
relationship between the state variables and guidance parameters. The
model that will be obtained will have three important properties. First
of all its form will not be assumed in any way. Secondly, the functional
relationship will be developed from the equations that define the motion
and the conditions that insure an optimum trajectory. Finally, the

relationship will contain a number of undetermined coefficients which

will need to be obtained by some method of curve fitting techniques.
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THE PROBLEM CONCEPT

In this paper a mathematical model defining the steering function
in terms of instantaneous state variables is developed for the powered
flight problem defined as follows:

1. Motion is assumed to occur in a vacuum.

2. Only two dimensional motion is considered.

3. Rigid body dynamics is neglected.

4, The earth is assumed to be spherical and homogeneous.

5. A constant applied force (F) is considered.

6. The time rate of change of the mass (m) of the vehicle is
constant.

Langrangian Multipliers are used to formulate necessary conditions
for extremizing some variable such as propellant consumption or burn-
ing time.

Equations Defining the Problem

The differential equations which define the motion of the vehicle

may be written as:

(1)
y = r—i-cosqi -EX

The coordinate system, x,y is chosen so'that x is parallel to the

surface of the earth, and y is perpendicular to the surface. The dot
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represents differentiation with respect to time. F is the thrust magni-
tude which we assume to be constant. Likewise, k is considered as a
given constant. The mass, m, is of the form mo + rflot where m0 and
n'no are considered as constants. The control variable is §, the direc-
tion of the thrust vector measured positive from the upward vertical.

Now consider the change of variables defined by

1

x r cos ¢ X1 = r X3 = T

(2)

vy r sin ¢ X, =r<i> 0=y +o

Under this transformation equations (1) become

x5 k
X3 = =2 . — 1+ — sin 6
X3 X3 m
. (3)
. F
%X, = - XX , = cos O
X3 m

The function whose time integral is to be extremized may be defined

as G =1+ E,)\ig, where )\i are the undetermined Lagrangian Multipliers,
i1i%i

and
2
. F
g1 = Xl-')iz— +—kg - —sin@®=0
X3 X3 m
g2 = ;(2 +M — cos 0=0
X3
g3 = X3 -3 =0 (4)
o, X
g+ = Xy 3 0
gs = fh-thy=0
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Applying the Euler-Lagrange conditions to the function G results in

the following system of equations:

2
. F
X3 = -X—Z--l-(z +— sin © (5)
X3 X3 m
- F
X, = XXz 4 Z cos O (6)
X3 m
. x
SRR PR W (7)
X3
. -2 1
N, = 2 o+ Fgy - =y (8)
X3 X3 . X3
2
. X2 2k X1 X2 X2
A3 = - =N - ==\ +t=5 X\

3 U_}X3 x%] 1 ” 2 v g M (9)
X2 = 0 (10)
. F F
)\5 = =2 sin ®©\; + —2 cos 9)\2 (11)

m m
F F
-— cos O\ +=— sinBX; =0 (12)
m m

Since G is explicitly independent of the independent variable, t, a
first integral of the system can be shown to be

)\1)'{1+)\2 5(2'*’)\35(3‘*‘)\43{4*’)\5 I:I'l:C] (13)

By substituting in equation (11) the values given for =, sin 6 and

o, cos 0 in equations (5) and (6) the following relationship is obtained:

2
. . k .
Mox ot A X2-§27\1+>g x1+xlxx7- X\, = m s (14)
3 3

By eliminating \; X1 + \; Xz between equations (13) and (14) the result
[

may be expressed as

x5 k X1 X2 N2

—)\1-—%)\1-—;3’—-—+>{_1)\3+>'<4)\4+r}1)\5+rh‘7\5'=c1 (15)
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Now multiply (7) by x1, (8) by x, and (9) by 2x3, and add to obtain

. ) 4k
x1 M+ x A+ 2x; Xs=-x\ - N +§i>\4 and  (16)
3 3

integrate both sides to obtain:
71
x1 Mt x2 A2 + 2x3)3 jE{l )\1"'5{2 A2+ 2X3N3-x) \3
4k
S 2 a e (17)
X3 X3
This simplifies (by using 13) to
4k .
X1 A1 T x2 A2 +ZX3)\3=—:{; Adt - {xs m dttcit +c3 (18)
3
The limits of integration throughout this development are from t
to t . The values of all state variables at t_ are lumped together as
one arbitrary constant.
Now solve x; A3 in equation (15) and add this result to x3 X3 as
found in equation (9) to obtain:
: . . . k
X3)\3+X3)\3 +m)\5 +m)\5 =Cy - )‘(‘2 )\1 (19)
3
which after integration with respect to t becomes
k
X3A3 + mks = - ;2 M dtt citt ocy (20)
3
k
Substituting the result obtained for 2 A1 dt in (20) into equation (18)
3
yields
X1 N T X2 )\z - 2X3)\3 = 4m)\5 - 3C1t+ Cs Jl’;ﬂ)\5 dt (21)
Now replace x3;\3 with the value given in equation (7); simplify and

integrate to obtain

4 [
X3 M -_fxs A3 dt = ;{4 m ks dt ",!f!m As dt - 3'/2 a1 t* testteg
S S
(22)
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Integratef}g A3 dt by parts to obtain using equation (20)

2
kt cit
IX3)\3 dt = x3\3 t*f;z‘ AN odt - 12 + m \s t-f(m)\s }dt (23)
3
. . kt\y dt
Now apply the mean value theorem for integrals to the integral —Z -
3
t t A dt
Write/ ¢ kt—)\lz-i as[ P B—t—x—;—— + c7 where the interval from t to
¢ S .
tp is picked so that ;_3_1_ does not change sign in the interval [t) tp] . Then
t
t tp kN dt k A
fckt—)\lz—d-t canbewrittenasa[p —lz—+c7:a C+dt+
t X3 t X3 t X3
c
kn dt
cg where cg = c7 - a/ _Xlz— and t<a = tp‘ Now replace
3
t
X kt A1 dt
[L{% by its value in%quatlon (20). Thert[—;%l—— = - axz\; -
amls t acit t cg (24)

Substituting this result in equation (23) and then in (22) yields
x3N T (a-t) X3 A3 =[3rn)\5 dt -Jyﬁfl)g dt + mhs (c1p -t)
-C11t2 +t c1,tt c13 (25)

Equations (15), (21) and (25) can be so arranged that the right side

. : . -mao
of the equations are functions of m, t, \s, and A\s . Since t = =
m
the right sides can be considered as functions of m  As ).\5 . Now

J

remember, in this study we are not attempting to solve these equations
but to find a model with undetermined coefficients that will satisfy the
equations. Thus to find such a model we now assume that the right

. F
side of each equation can be expressed as a power series in (— to give
m

ok X F\i
(X—Z-q) = P W bi(—)
X3 X3 X3 X3 =0 m (26)
© Fii o0 Fi
X1>\1 + x; )\2 -2 X3)\3 :E_ Ci —)' X3>\1+X3(a-t))\3=z di(—)
i~ m .’ i=0 m
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The bj, c; and d; are unknown coefficients, which when they appear
in the model, will need to be evaluated by some curve fitting technique
that fits the model to the space of optimum trajectories. Now consid-
ering these equations as three equations in unknowns \;, XAz, A3, we

N
solve for \;, and \, . Since cot 9=f the results will be expressed in
1

terms of cot 0; cot 8 was selected rather than tan 6 to make the denom-

inator as simple as possible.

r X . .

k IFi [F| i F\i
cot © 1(}(2 -= ) Zk; l—z + x% 2L (—) + x1 X323 (—-—)
X3 rnl m m

{ i

2 IF\
+ x3 Zsg 1 — !
m

/ k
+ ¢y EXZZ - _) tt czxpx3tteosxy X tHea x1 X2
\

X3

t cs5 %2 XsJ [Xl X2 2gj r;] + %2 x3Zh; (;)
I

+ cexpx2tt+ c7 X3 X3t + C8X§t+ C9X%] (27)
In recent guidance polynomials the series have been truncated after

F
second order terms involving —. If we assume that all terms involving
m

F 12
s of the rational function are dropped off after r;) , equation (27)

becomes
- 2 2 k 2
cotO = japxt + azxyxz + as x x3 + as x1 x3 t+ ag (XZ - )+ a X3
X3

k F
tTarxixptt asX1X3t+a9(X§ -=)t+a x{ (—
X3 m

k,|[F F?
+ ars (x3 -—)(—)+ ay 4 %t (—)
X3 m m

F . |[F 12 k, |F|?
T a1s x1 X3 (_‘ T a16Xx3 (;) + a17 (x5 -—)‘—)

ml X3 m
{313X1Xz T a19xz x3 + az x5 taz1xixptt az 2 xz x3t+

EF F

+ ay1x) X3

2
az3xzt+ azexix; t azs Xz X3

]

F 2
+ az ¢x1 %2 (r—n) (28)

az 7 X2 X3
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Of course the assumption that the series involvingr% can be trun-
cated after second order terms may or may not be correct. The order
of the terms at which all other terms would be insignificant would need
to be determined by considering problems on an electronic computer.

Thus the cot 0 is expressed in terms of a rational function of state
variables involving 17 terms in the numerator and 10 terms in the de-
nominator. To use this function as a guidance function would require
that 29 constants be found by some curve fitting technique such that the
function would give a good representation of the space of optimal tra-
jectories.

It is of interest to investigate what additional assumptions will need
to be made in order to change our rational function to a polynomial.
This can be accomplished in either of the following ways.

In reference (1) Mr. Moyer considered the equations (4) without the
condition that g4 = X4 - ;}Z: = 0. If we take the assumption of Mr, Moyer
we will be able to obtain a polynomial.

If we are not able to make the above assumption then we can still
obtain a polynomial by certain assumptions relative to equation (15).

In this equation group the X4 A4+ (which can be written as ¢ i{2‘--) on the

X3
right side of the equation to obtain:
x5 k X1 X CcX
=2 M- 2 M- 2 N2 txak3 =c1 - 2+ mXs + mlg,
X3 X3 X3 X3

C2 X2

Now assume that ¢; + 1:n)\5 + mls can be written as a power
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series involving o Under this assumption , then equation (27) may
be simplified in the following manner. Multiply the numerator and de-

F
nominator by ot divide by x; x3; and then divide the numerator and

’

B!
denominator by the power series Zh; ‘r_n' to obtain:
2 ' /
1., k.,Za; |F|\} /x| Zb; [F ¥ Zc F‘Zd-Fl.,
cot'9=$[(¢z - =3) a1 {— oz * —) + =, * ! + 1(—\
r’ i=zo m, 'r; 3j=1 m r, ij=o |mj iz1 m/ ;
r\Ze; (F)?
1 +|= i=0 |
r m
(29)
or
1 2k Zf; [F\ | r Zg; [F)\!, =h; [F|? Zj: [E |
cot 6= .£(¢Z - —3) fs (—) = 7BE (—)+ hi (——J + = Jl(—)l
3; r r i=0 m, r ;=1 m' i=0 _rn_ r i-=1 m'
F i
1 ++ Zk; (—
r m (30)
These two expressions for cot @ are equivalent. The terms in the
r Ze; [F|°
denominators are reciprocals. Now if % ci r—n) converges to a
i=p

number in absolute value less than 1, the denominator can be expanded

. - - - r
as a negative binomial in the numerator. If T Zej;

1
—-) is greater than
] m
r Fl?
one then ‘; Zk; 1’-1’_1 is less than one and the second denominator can

be expanded as a negative binomial in the numerator. Thus we have

~

r Ze; [FI|
two polynomials representing cot 6 depending on whether% i {—
i=o |m

r Zei

is less than or greater than one. Since in general the size of —

Fi
r i=o )

m

is not known, we write down all the terms contained in both polynomials.
Notice that the model obtained involves r, T and<i> and could possibly

reduce the number of terms needed in a polynomial guidance function.
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cot ©

15- (F 12 T F)
Cbl_al + a; +a3;) + a4 1;}4— asg ¥J ;i
iry|F iyl fr,z z
ag ‘; E + ag l‘;') ' + ag I\;’; (; + a:,( J
i' r‘IF; F'YZ L2
alo('r")+ a1 (-ljii'r—n}Jr aiz o . tans
y M
v |E| i, 2 [F 2
s (3] (ml s 1T (m;
. K . ki F. k
are |92 -;3} + arg | $° -;3}ir_n;+ aig ¢ -';3\
. k k [ F
a19(¢2 -3 ’\’E}Jf a20,9" - 3 (%‘(; + 821(432-
2 k) r : kir E\
a2z (4’ T HEREE L r3H'r) m
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SUMMARY

From a given vector derived previously, an ideal function is developed
which satisfies a specified least squares error tolerance.

THE FUNCTION
In the vector Gyp1 = (XO, Al, ces xn), computed in [3] , Suppose we
let A, be the value of some ideal function ¢N+l(6) at p.; i.e., ¢N+1(Bi) =

xi. Then this ideal function assures us that the error E, where

N - 2

A LGRS R Agey(By) = Aygen(Py) | oo

is less than the imposed tolerance §. Since we know the values of this

ideal function at the tabular values Bi’ our next objective is to develop
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a technique for computing ¢N+1(5'), for some value B' # Bi, i=0,1,...,n,
N+1

such that the error obtained by using % quﬁ(a,) to approximate X(B'),
j=0

in the sense of least squares, is as small, if not smaller, than the error

N
obtained by approximating X(p') with % Aj¢j(B'). We obtain this value
j=0

¢N+l(5‘) in the following manner.

First, we compute A ,(k), k = -1, 0, 1, ... , N, e and Al as

follows:
1
A1) =
I apy - jEO (oy,a0 ©5) ©; |
A2(0) = A, (1) A1) (g, @)
. _ N-1
Aoy (M) = Ay (1) A1) qp) - E:o A (3) A(8)-
J_
- _ N L
“N+1 = A (D ey - jEO A1 (3) ©3
Ay = (% egyy)-

Finally, compute the (N+2) Aj's, j=0,1, .o. , N+1, as follows:

Ay = A AN+1('1)
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A (A - A A

ot

il
0

A (0 { Ay - D) A (- A, (1) + A, (DR (AD) |,

Now let B, be a B, such that || Biv - B | = . xzi;l . { I By B |l } ‘

and let us define the following function:

Le,,) - 208, - 8|

where M(B"') 10 G ,
il

il
>

for 2 || B, - B' |l < L(By,)s

0, otherwise,

i

where L(Bi,) = min {H By - By I } .

Thus, when B' is chosen, we are able to use the function above to .

approximate X(B'), being assured that the approximation obtained here is

N
no worse than the value I A.cp.(B') obtained by using the initial least
j=o 979
’
squares approximating function.
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Writing this multiple of Xi as

%L(Bi|) - “ Bit - B! u

1

we see that we have a factor which varies from zero to one as B' varies

from a position on the boundary to a position at the center of the ball

1
{e|le, -l < e, )
Thus, the factor xi,which was derived in association with the vector B,,
is weighted depending on the nearness of B' to 51,.
For a particular B', we may have a possibility of multiple choices
for Bi" Perhaps, more than one of these would satisfy

2 n Bi' - B H < L(Bil)‘

This situation depends on the configuration of the 5i's and on the

orientation of B' with the Bi's near it in the norm sense.

Suppose there are m choices of Bi" and r of them satisfy

2 n Bit - ﬁ' “ < L(Bl'). Tet Biv, Bi" e Bi' denote these Birts'
1 2 T
L(al_;;) - 2 “ Bi' - B H‘\

let Hy, = max and M(B') =

t 1<t<r L(B.,) J

o - - i
t
Xi" Hi' . Thus we orient B' with the Bi which exerts the most influence
to to

on B'.
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